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I’ve been asking the same question for 35 years. What do our
crystallographic anisotropic thermal-motion parameters mean? 
My approaches over the years include:

(1) Visualizing anisotropic thermal motion – a graphics
program ORTEP (1965,1976,1996) illustrates thermal motion
as fields of probability ellipsoids. Dr. Mike Burnett is now
ORTEP’s guardian and developer (email: ortep@ornl.gov).

(2) Segmented-body thermal motion – a program ORSBA
(1967) combining Schomaker and Trueblood’s rigid body and
Busing and Levy’s riding model to analyze molecular motion.

(3) Higher-order thermal motion – statistical models using a
tensor cumulant expansion (1968) and a related Gram-Charlier
expansion (1974) for crystallographic least-squares refinement.

(4) Curvilinear thermal motion – a mechanistic moment
expansion which produces coefficients for the higher-order sta-
tistical models from rigid body libration parameters (1969).

(5) Probability measures for thermal motion correlation –
a new exploratory approach utilizing the Radon-Nikodym
density (derivative) for Gaussian probability measures and
processes.

This lecture is on correlated thermal motion [items (1), (2)
and (5)], and includes future research possibilities.



3n-Dimensional Mean-Square Thermal Motion
in 3-Dimension Crystals 

(n = Number of Atoms in Asymmetric Unit)

1. Stereoscopic Thermal Ellipsoid Illustrations –
Visualization of certain types of correlated molecular
motion, particularly large amplitude rigid-group libration
and translation. Requires the viewer to have stereoscopic
vision and chemical perception experience.

2. Quantitative correlated-motion analysis – based on large
joint motion probability matrices derived from:

(1) Quantum mechanics calculation of 3n-6 × 3n-6 mean-
square displacement matrix for an isolated molecule, or
3n × 3n matrix for a small crystal structure.

(2) Spectroscopic normal coordinate analysis assigning
intramolecular symmetric displacement modes to
molecular vibrational frequencies and intermolecular
space-group symmetric lattice displacement modes to
lattice vibration frequencies.

(3) Starting with a set of m (m ≤ n) 3 × 3 crystallographic
thermal-motion matrices, one can use models such as
the Schomaker-Trueblood rigid-body model to fill in
some or all of the off-diagonal interatomic correlation
blocks of the 3m × 3m matrix.

(4) Combinations of (1), (2), and (3). Particularly recent
work by Hans-Beat Bürgi of Switzerland, Bryan Craven
of USA, and their coworkers.



Thermal Motion Attributes

True thermal motion components often seen in a small
molecular crystal:

Molecular rigid body motion
Translation
Libration

Coupled rigid body motion
Phenyl group torsion

Terminal group motion
H atom wag (neutron data)
Carbonyl O wag
Methyl torsion (neutron data)
Carboxyl oxygens torsion

Pathological effects that may make the thermal-motion
pattern “look strange”:

Crystal order and symmetry imperfections
Disorder at symmetry elements
General orientational disorder

Poor data and/or refinement mistakes
Dick Harlow’s ORTEP-of-the-Year awards

Wrong space group/unit cell mistakes
Dick Marsh’s “correction” awards
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Internal Motion from Spectroscopic Normal 
Coordinate Analysis

Before fitting rigid body to organic structures derived through 
neutron diffraction, it is necessary to subtract out the internal 
motion using transferable parameters derived from molecular 
spectroscopy vibration frequencies. For benzene, the 
along-bond, in-plane, and out-of-plane rms displacements are 
(0.036Å, 0.029Å, 0.041Å) for C and (0.077Å, 0.116Å, 
0.150Å) for H at 25° C. Related values for cyclobutane are 
illustrated below.



Phenylhydroxynorbornanone
(50% Thermal Ellipsoids)

Visual Evaluation of ORTEP Drawings

Check each peripheral atom for size and shape relative to its parent atom – should be 
larger and any shape differences should make chemical sense. ( see C-H, C=O, O-H)
Check for reasonable torsion in terminal groups (CH3, CO2).
Check for rigid body motion in major groups and subgroups. (see phenyl group and cage) 
Libration is usually determined by group inertia, attachment bonds, and the surroundings.
The more complex phenyl motion shown is due to whiplash caused by an internal warping 
motion in the cage.
The phenyl group has good rigid body (TLS) motion with pronounced screw (S) 
components, correlating libration (L), and translation (T).

1.

2.
3.

4.
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75% Thermal Ellipsoids 
15 K Neutron Data
R(F  ) = 5%2

Cr(CO)3•(CH3O)3C6H2CO2CH3

Allen Hunter
Youngstown State University
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Correlating Our Independent 3D Gaussians

Conceptual problems which arise when modeling atom thermal
motion.

1. We talk about 3-n dimensional mean-square displacement
spaces, but everything really happens over time in a
common 3-dimensional space.

Use infinite-dimensional cylinder spaces which project
into finite dimensional probability subspaces integrated
over time.

2. Each Gaussian function is infinite, but the thermal displace-
ment of a well behaved atom is strictly local. Atoms do not
often swap positions with other atoms.

Use separable spaces that partition into one subspace
per atom using topological or statistical methods.

3. Most atoms in crystals are very “territorial” and dislike
being too crowded or too isolated.

This would require mechanistic input assumptions such as
atom-pair distance potential functions or molecular
dynamics calculations.

To accommodate 1 and 2 into a probabilistic model, Gaussian
process models using conditional distributions seem to be a
promising new approach. We have some preliminary results
along that line.



Radon-Nikodym Density

The characteristic equations (in an orthogonal reciprocal space
coordinate system) 

φk(z)= exp{iak
tz - 1

/2z
tBkz}  k=1,2

define two adjacent atoms with means a1, a2 and temperature factor
matrices B1, B2. The direct space Gaussian densities are:

µk(x) = (|Bk
-1|/(2π)3/2) exp{-(x-ak)t Bk

-1(x-ak)} k=1,2.

Using B2
-1/2 as a transformation matrix, we define

b = B2
-1/2(a2-a1),  c(x) = B2

-1/2(x-a1),  D2,1 = B2
-1/2 (B1-B2) B2

-1/2,

where D2,1 is a Hilbert-Schmidt matrix (for atom 2 with respect
to the reference atom 1) with 3 eigenvalues and eigenvectors denoted
as λk and ek,  k=1,2,3, respectively. 

The Radon-Nikodym density, ω2,1(x)  defined as the derivative of
µ2(x) with respect to µ1(x),
 

(dµ2/dµ1)(x) = exp{- 1 

2 
[ 

3 

3 

k = 1 
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2
 (λk/(1+λk)) - ln(1+λk)] + 

ct(x) b - 1/2bt b },

provides a mechanism for separation of the Gaussian atoms. 

Ref:  I.I. Gihman and A.V. Skorohod (1974), The Theory of
Stochastic Processes I, Springer-Verlag, New York, NY, p. 496.



Properties of Radon-Nikodym Density
ω 2,1(x) = [dµ 2 / dµ 1](x)

1. Definition – ω2,1(x) is an absolutely continuous component
of Gaussian µ2(x) with respect to Gaussian µ1(x).

2. ω 2,1(x) = 1 defines a 4th order hyperplane surface separating
µ1(x) from µ2(x) and bounds the range of µ1(x).

(a) At this surface we have the equalities: 
µ2(x) = µ1(x), (i.e., densities are equal), and
ω2,1(x) = [1/ω2,1(x)] = [dµ1 / dµ2](x) = ω1,2(x)

(b) The partition is planar if it lies in a mirror of symmetry or
pseudo-symmetry for the atom pair, but nonplanar partition
surfaces are the general rule.

3. At the µ1 mean (a1), ω2,1(x) is a minimum and increases along
ω2,1(x) fibers which terminate at the partition ω2,1(x) = 1.

4. The chain rule of differentiation applies, i.e.,
(dp / dq) = (dp / dr) (dr / dq); thus,
(a) The boundaries for three adjacent atoms meet in a line (in

general a curved polyhedral edge).
(b) The boundaries for four (highly) non-coplanar adjacent atoms

meet at a point (a polyhedral vertex).

5. Partitions arising from all first neighbors around any µ(x) define
a “dented ball” range and boundary for that µ(x).

6. The ωi,j(x) = 1 statistical partitioning is not critical-point
topology partitioning; but, the vertices, edge midpoints, face
centroids, and µ mean sites of the former will be close to the pit,
pale, pass, and peak critical points of the latter.



Properties of the Hilbert-Schmidt Matrix

Hilbert-Schmidt (D = B2-1/2 ( B1-B2) B2-1/2) Calculations.
Eigenvector 1 of D is always near the Interatomic Vector.

                                 
                   Partition         Eigenvalues     
                     Point     D(1)      D(2)      D(3)   

 From Normal Coord. Anal.
       -----------  -------  --------  -------   --------
        2 C-H (RT)  0.34(1)  -0.74(1)  -0.94     -0.95

 From 6 Neutron Structures                             
       -----------  -------  --------  --------  --------
       14 C-H (15K) 0.41(3)  -0.52(9)  -0.73(4)  -0.79(5)

       13 C-H (RT)  0.51(1)  -0.06(6)  -0.35(3)  -0.51(5)
       15 C-H (RT)  0.51(2)  -0.05(13) -0.39(5)  -0.52(3)
        5 C-H (RT)  0.50(2)  -0.13(5)  -0.43(8)  -0.55(5)
       14 C-H (RT)  0.52(2)   0.02(12) -0.42(5)  -0.58(6)

        8 N-H (RT)  0.50(1)  -0.06(5)  -0.31(11) -0.43(5)

The above include two phenyl norbornanol derivatives, a TCNQ-benzene
adduct, a photodimer with 3 methyl groups, a tetrathiourea derivative,
and a methylether complex synthesized by Allen Hunter. The normal
coordinate results are for cyclobutane.

• “Partition Point” is where the partition plane intersects the C-H bond.

• The coefficients of the matrix D are dimensionless.

• When used for terminal C-H, D is roughly identical numerically for
all groups containing C-H bonds, even methyl groups.

• D is temperature sensitive because of H zero-point energy. Note the
much larger coefficients at 15 K.

• N-H groups seem to behave differently than C-H groups.
     

• O-H groups definitely behave differently because of H-bonding, but 
a C=O seems to have thermal motion which mimics that of C-H at
room temperature.



Future Research Possibilities

A. Methods by Hans-Beat Bürgi, his coworkers, and
others combining rigid bodies, spectroscopic normal
coordinate analyses, and quantum mechanics calculations
provide a valid and fruitful approach. (Ref: M. Fortsch
(1997), Normal Mode Analysis from Atomic Mean Square
Displacement Amplitudes, Ph.D. Thesis, Bern
University.)

B. Probabilistic approaches using modern Gaussian
measure theory have yet to be applied by
crystallographers but seem to offer a promising approach,
for example:

 
1. Vector-valued Gaussian Measures with the atoms

of the asymmetric unit as Hilbert-Schmidt forms in an
Ito-Weiner stochastic model. (Ref: A.A. Doregovtsev
(1994), Stochastic Analysis and Random Maps in
Hilbert Space, VSP, Utrecht)

2. Conditional probability thermal-motion program
for automatic growth of coupled rigid-body models
using a graph-based iterative likelihood function. (Ref:
S.L. Lauritzen (1996), Graphical Models, Clarendon
Press, Oxford.)

3. Better estimates of interatomic distance corrections
for atom-pair thermal motion using first and second
order Gaussian Chaos. (Ref: M. Ledoux and M.
Talagrand (1991), Probability in Banach Spaces:
Isoperimetry and Processes, Springer, p. 65, p. 326.)
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