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Abstract

Geometric topology and structural crystallography
concepts are combined to define a new area we call
Structural Crystallographic Topology, which may be of
interest to both crystallographers and mathematicians.

In this paper, we represent crystallographic symmetry
groups by orbifolds and crystal structures by Morse func-
tions. The Morse function uses mildly overlapping Gaus-
sian thermal-motion probability density functions cen-
tered on atomic sitesto forma critical net with peak, pass,
pale, and pit critical pointsjoined into a graph by density
gradient-flow separatrices. Critical net crystal structure
drawings can be made with the ORTEP-III graphics pro-
gram.

An orbifold consists of an underlying topological
space with an embedded singular set that represents the
Wyckoff sites of the crystallographic group. An orbifold
for a point group, plane group, or space group is derived
by gluing together equivalent edges or faces of a crystal-
lographic asymmetric unit.

The critical-net-on-orbifold model incorporates the
classical invariant lattice complexes of crystallography
and allows concise quotient-space topological illustra-
tions to be drawn without the repetition that is character-
istic of normal crystal structure drawings.

1. Introduction

For our purpose we will say that crystallography is
the study of atoms in crystals, topology is the study of
distortion-invariant properties of mathematical objects,
and crystallographic topology is an intersection of those

two disciplines. Since both topology and crystallography
have many subdisciplines, there are a number of quite
different intersection regions that can be called crystallo-
graphic topology; but we will confine this discussion to
one well delineated subarea.

The structural crystallography of interest involves the
group theory required to describe symmetric arrangements
of atoms in crystals and a classification of the simplest
arrangements as lattice complexes. The geometric topol-
ogy of interest is the topological properties of crystallo-
graphic groups, represented as orbifolds, and the Morse
theory global analysis of critical points in symmetric
functions. Here we are taking the liberty of calling global
analysis part of topology.

Our basic approach is that of geometric crystallogra-
phers who find the pictorial reasoning of geometric topol-
ogy intriguing. From a mathematical perspective, one can
reformulate the subject using algebraic topology concepts
such as cohomology, which we seldom mention in this
paper.

The International Tables for Crystallography (ITCr),
Volume A: Space-Group Symmetry* is the chief source
for the crystallographic material in the following discus-
sion. It is our hope that the discipline of “Crystallographic
Topology” will mature in completeness and usefulness to
justify the addition of this subject to the ITCr series at
some future time.

There are a number of crystallographic and topologi-
cal concepts that lead to the following mappings of struc-
tural crystallography onto geometric topology. Only the
first two of the three mapping series are discussed here.

Crystallographic Groups — Spherical and Euclidean Orbi-
folds

* Research sponsored by the Laboratory Directed Research and Development Program of the Oak Ridge National Labo-
ratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under Contract No.

DE-AC05-960R22464.



Crystal Structures — Morse Functions — Critical Nets —
Critical Nets on Orbifolds — Lattice Complexes on Criti-
cal Nets on Orbifolds

Crystal Chemistry — Convolution of Chemical Motif
Critical Netsonto Orbifold Singular Sets

11 Organization

Sect. 1 provides an overview and illustrates a smple
critical net, orbifold, and critical net on orbifold based on
the sodium chloride crystal structure. Following a review
of relevant orbifold references, Sect. 2 continues to illus-
trate and classify the 32 spherical 2-orbifolds derived from
the crystall ographic point groups and shows how spherical
2-orbifolds can be used as construction elements to build
the singular sets of Euclidean 3-orbifolds. Sect. 2 also
illustrates basic topology surfaces, derivation of all 17
Euclidean 2-orbifolds from crystallographic drawings of
the plane groups, and example derivations of Euclidean 3-
orbifolds by lifting base Euclidean 2-orbifolds. Some of
the singular sets of the polar space group orbifolds are
illustrated since polar space groups are the ones of chief
interest to biological crystallographers.

Sect. 3 describes the Morse functions used and shows
additional critical net examples, using ORTEP illustra-
tions, and summarizes their characteristics. Sect. 4 illus-
trates the derivation of critical nets on orbifolds, their
presentation in linearized form, and the derivation of a
symmetry-breaking family of cubic lattice complexes on
orbifolds. The crystallographic lattice complex model as
modified for critical nets on orbifolds is discussed in Sect.
5. Sect. 6 summarizes the current status of crystallo-
graphic topology and the future devel opments required to
make it a productive subfield of contemporary crystallog-
raphy. The Appendix shows a group/subgroup graph for
the cubic space groups.

A Crystallographic Orbifold Atlas (in preparation)
will eventualy provide a full tabulation of those topologi-
cal properties of crystallographic orbifolds that seem po-
tentially useful to crystallographers. We have basic results
covering most of the space groups, but at present we have
not developed an optimal format or adequate graphics
automation for their presentation.

12 Critical Nets

Critical nets are based on the concepts of Morse
functions and Morse theory>*+5(i.e., critical point analy-
sis), which are classic topics in the mathematical topology
and global analysis literature.

Our recently released ORTEP-111 computer program®
can produce “critical net” illustrations that depict some
canonical topological characteristics of the ensemble of
overlapping atomic-thermal-motion Gaussian density
functionsin a crystal. Only non-degenerate critical points
are considered here since a degenerate critical point can
always be distorted into a set of non-degenerate ones

through small perturbations.”® We have so far not found a
true degenerate critical point in a valid crystal structure
and have a working hypothesis that all crystal structures
are Morse functions, which are named after Marston
Morse? and have no degenerate critical points.

Critical points occur where the first derivative of the
globa density is zero. The second derivative at that point
isa3 x 3 symmetric matrix, which has a non-zero deter-
minant only if the critical point is non-degenerate. The
signs of the three eigenvalues of the second derivative
matrix specify the types of critical points, which we term
peak ('1'1')! pass (+1_!')1 pale (+!+=') and plt (+1+1+)' A
degenerate critical point will have a singular second de-
rivative matrix with one or more zero or nearly zero ei-
genvalues.

The critical points are best described as representing
0-, 1-, 2-, and 3-dimensional cellsin atopological Morse
function CW complex (i.e., C for closure finite, W for
weak topology). We use a*“critical net” representation that
has unique topological “separatrices’ joining the critical
point nodes into a graph. We denote the peak, pass, pale,
and pit critical points with the numbers 0, 1, 2, and 3, re-
spectively. The most gradual down-density paths from a
peak to a pit follow the sequence peak — pass —» pae -
pit. These paths, shown by the separatrices (i.e.,
“connection links”) in Figs. 1.1 and 1.2, are topologically
unique. This uniqueness arises because: (a) the pass and
pale critical points each have one unique eigenvector con-
necting to the separatrices going to one peak and one pit,
respectively, and (b) there are two-dimensional hyper-
planes connecting to the two remaining eigenvectors of
each pass and pale and these non-parallel hyperplanes
intersect each other locally to form the pass-pale separa-
trices.

We postulate that there are no bifurcated (forked)
separatrices or degenerate critical points in the crystallo-
graphic critical nets of interest here. In experimentally
derived crystallographic macromolecule electron-density
functions, thiswill not be the case because of critical point
merging caused by inadequate resolution experimental
data and lattice-averaged static disorder. Theoretical
quantum chemistry and high precision x-ray structure re-
sults may also lead to exceptions because of added quan-
tum chemistry topological features.®

1.3 Critical Net for NaCl

Fig. 1.1 is an ORTEP-III critical net illustration for
one octant of the NaCl unit cell contents with the larger
corner spheres representing Cl peaks; the smaller corner
spheres, Na peaks; the cigar-shaped ellipsoids, passes; the
pancake-shaped ellipsoids, pales; and the smallest sphere
in the center, a pit. The reason for this choice of shapes for
the pass and pale saddle points is that in the simplest ex-
amples the passes and pales represent edges and faces,
respectively, for convex polyhedrain special cases such as
NaCl. Non-polyhedral counterexamples are discussed in
Sect. 3.



Figure 1.1. ORTEP critical net illustration of NaCl.

Fig. 1.2 shows the critical point (O=peak, 1=pass,
etc.) locations in one octant of the unit cell for NaCl. A
sodium ion is on the peak site in the lower right front, and
a chloride ion is on the peak site in the lower right rear.
The vectors in Fig. 1.2 point downhill, in a density sense,
along the topologically unique paths of the critical net.

Figure 1.2. NaCl critical point network in one
octant of the unit cell (left) and in an
asymmetric unit of the unit cell (right).

NaCl crystals have the internal symmetry of space
group FM3m, which is #225 in the ITCr.* The genera po-
sition multiplicity within the unit cell is 192, which is the
largest multiplicity possible in the space groups. Points on
symmetry elements have smaller total unit cell occupancy,
called the Wyckoff site multiplicity. Thus, there are 4 Na
+ 4 Cl peaks, 24 passes, 24 pales, and 8 pits in the unit
cell. The shaded tetrahedron in Fig. 1.2 is an asymmetric
unit (fundamental domain) of the unit cell, which occupies
1/24 of the volume shown and 1/192 of the unit cell vol-
ume.

14 Orbifolds

As Walt Kelly's philosophical comic-strip character
Pogo might have said, “The trouble with symmetry is that
it's too repetitious.” Orbifolds remove all repetition; thus
all space-group orbifolds will have roughly the same size
and complexity (see Sect. 2.9), a situation that contrasts
sharply with traditional crystallographic geometric draw-
ings of space group symmetry as giveninthe ITCr.

A crystallographic orbifold, Q, may be formally de-
fined as the quotient space of a sphere, S, or Euclidean, E,
space modulo a discrete crystallographic symmetry group,
G (i.e, Q=K/G where K=S or E). G isone of the ordinary
32 2-D point groups if K is a 2-sphere, one of the 17 2-D
plane groups if K is 2-Euclidean, or one of the 230 3-D
space groups if K is 3-Euclidean. In the present discus-
sion, we have no need to generalize into dimensions
higher than three or to utilize hyperbolic orbifolds.

Another viewpoint is that an orbifold is a compact
closed quotient space that results when all equivalent
points are overlaid onto one parent point. In contrast to the
orbifold’s closed space, the crystal space is an open (infi-
nite) Euclidean 3-space.

15 Orbifold for Space Group Fm3m

Fig. 1.3-left shows the 3- and 4-fold rotational sym-
metry axes within an octant of the unit cell for Fm3m, and
Fig. 1.3-right shows the orbifold and its singular set using
the orbifold nomenclature discussed in detail in Sect. 2.
Briefly, the corner Wyckoff site (a), which has orbifold
notation, 4'3'2', lies on 4-, 3-, and 2-fold axes running
along its adjacent edges. All four faces contain mirrors, as
denoted by the primes on the numbers and double linesin
the drawing.

D3'32"

Figure 1.3. Euclidean 3-orbifold for
space group Fm3m.

The topological information for the tetrahedral
Euclidean 3-orbifold of NaCl is expressed more economi-
cally in the skeletal drawing shown in Fig. 1.4-left, in
which the viewpoint is directly above an apex of the tetra-
hedron. The mirror locations are indicated by the symbol



1" with the mirror for the bottom hidden face indicated by
the cornered 1' over the tetrahedron. Every axis marked
with a prime, such as 4', has to have two adjacent mirror
planes and every corner point, such as 2'2'2' (inferred from
the axes' intersections), has to have three adjacent mirror
planes. Thus, we can interpret the skeletal tetrahedron
details almost as easily as the double line mirror symbol
drawingin Fig. 1.3.

Figure 1.4. Fm3m orbifold and NaCl
critical-net-on-orbifold representations.

16 The Rubber Sheet World of Topology

An artist can exercise artistic liberties to emphasize
desired features in a picture, but a topologist can and does
exercise even more liberties in his rubber sheet world
where any deformation is perfectly acceptable as long as
you do not tear anything.’® When topologists read the old
warning label on computer punched cards, “do not fold,
mutilate, or spindle,” they probably only took the third
item serioudly. (The dictionary definition of spindle isto
impale, thrust, or perforate on the spike of a spindle file.)
Fig. 2.5 shows several examples of how arectangle can be
deformed in space and glued to itself to form a surface. In
that spirit, it is perfectly acceptable to deform the tetrahe-
dron into a sphere, as shown in the middle drawing of Fig.
1.4, and put the 3'3'2' dihedral corner and its attached 3'
and 2' axes in the upper hemisphere. This makes the un-
derlying topological space, a 3-ball, more readily appar-
ent.

The Wyckoff site list for Fm3m in the ITCr* tells us
there are two mirrors, three 2' axes, one 3' axis, and one 4'
axis. Yet in Fig. 1.4-middle, it appears these numbers
should be 4, 3, 2, and 1, respectively. So what is going
on? The answer is that a 3-fold axis can do strange and
wondrous things simply because it is an odd-order axis,
the only onein crystallography.

For example, in Fig. 1.3-left a single straight body-
diagonal axis from ato b through ¢ has two noneguival ent
parts, ac and bc, while all even-ordered axis segments
repeat themselves about an intersection of axes. Thus,
what at first appears to be two different axes along the top
edges of the asymmetric unit isin fact a single bent axis.
A 3-fold axis can also bend a mirror around itself without
breaking it. Thusin Fig. 1.4-middle, the three mirror seg-

ments in the upper hemisphere that are in contact with the
3-fold axis are simply different parts of the same mirror.
All orbifold mirrors start and stop only at even ordered
axes.

17 Linearized Critical Net for NaCl

By superimposing Fig. 1.2-right onto Fig. 1.3-right,
we obtain a critical-net-on-orbifold representation, which
is one of the main topics of our presentation. Again taking
afew topological liberties, we can deform the whole criti-
cal-net-on-orbifold silvered 3-ball to arrange the peaks,
passes, pales, and pits in sequence vertically down the
page as shown in the right-hand drawing of Fig. 1.4. Thus,
density decreases as you go down the page and we have
literally mapped Euclidean 3-space to Euclidean 1-space,
which is characteristic of Morse theory. This linearized
critical-net-on-orbifold drawing still accurately portrays
the Euclidean 3-orbifold and NaCl critical net information
and is topologically correct. The symbols within the cir-
cles are lattice complex symbols discussed in Sect. 5.

This critical-net-on-orbifold drawing with the lattice
complex information for each critical point site added
provides an excellent summary of the structure’ s local and
global topology, particularly if the Wyckoff site multi-
plicities are also recorded on the same drawing as shown
in Sect. 4. The advantage that orbifolds and critical nets
on orbifolds provide is a concise closed-space portrait of
the topology for crystallographic groups and simple crys-
tal structures, respectively.

2. Introduction to Orbifolds

Some elementary textbooks on geometric topology
that we find useful include Barr,*® McCarty,** Rolfsen,*
and Kinsey™ with Kinsey™ the recommended introductory
text. For more general mathematical topics, we use 1to.**
The V-manifold of Satake™ provided the first formal defi-
nition of what was later renamed orbifold and popularized
widely by William Thurston. This concept was devel oped
by Thurston into a major geometric topology discipline.
Thurston’s unpublished Princeton class notes of 1978 en-
titled “Three Dimensional Geometry and Topology,”
which is being expanded into a book manuscript of the
same title,® and an article by Scott™ constitute the main
general references on orbifolds.

The first systematic study of crystallographic orbi-
folds was done by W. D. Dunbar®® in his 1981 Princeton
dissertation, carried out under Thurston, and in which he
derived and illustrated the singular sets for the 65 polar
space groups using oriented orbifolds. The parts of his
dissertation related to the underlying hypersphere space S®
were published in 1988."° The second major contribution
to crystallographic orbifolds is the systematic develop-
ment of orbifolds (both oriented and nonoriented) in Seif-
ert fibered space in Bonahon and Siebenmann’s unpub-
lished manuscript® Part of that manuscript related to



Euclidean 3-orbifolds, but omitting direct discussion of
crystallography, was published in 19852 A book on
“Classical Tesselations and Three-Manifolds” by Mon-
tesinos® covers and expands certain aspects of Bonahon
and Siebenmann’ s work.

A nomenclature system for 2-orbifolds was published
by John H. Conway? of Princeton. Conway and Thurston
have a nomenclature system? for noncubic Euclidean 3-
orbifolds based on the lifting of 2-Euclidean orbifolds to
form Seifert fibered spaces.

21 Typesof Crystallographic Orbifolds

Three types of groups are at the foundation of general
crystallography: point groups, plane groups, and space
groups. Their respective orbifolds are spherical 2-
orbifolds, Euclidean 2-orbifolds, and Euclidean 3-
orbifolds. Sect. 2 is concerned with the first two types,
and how they relate to the third.

Our main application of the spherical 2-orbifolds is
relative to the Wyckoff sites and their symmetries which,
in the case of a space group orbifold, become the compo-
nents of its singular set. The singular set of an orbifold is
the union of all the special Wyckoff sites in an asymmet-
ric unit (fundamental domain) of the space group’s unit
cell. The symmetry of each Wyckoff site is called the
isometry of that site (i.e., the part of the symmetry group
which returns a point on that site to itself). The multiplic-
ity for a Wyckoff site is the number of sites with that spe-
cific isometry within the unit cell and is the ratio of the
isometry of the site to the order of the space group modulo
the unit cell translations. The order of a space group itself
isinfinite.

22 Orbifolding Mechanics

Point groups are simply discrete symmetries about a
point, limited crystallographically to the 2-, 3-, 4-, and 6-
fold symmetries of cyclic, dihedral, tetrahedral, and octa-
hedral groups. The 2-fold symmetries include mirror
symmetry. Since it impossible to draw things on a point, a
sphere about the point is used instead, and the intersec-
tions of the rotation axes and mirrors with the sphere are
indicated in the point group drawings. There are also three
kinds of mirror-free inversion centers symbolized 1, 4,
and 3, with the latter two having 2- and 3-fold rotation
axis subgroups, respectively.

Orbifold cone points are derived from a rotation axis
that does not liein amirror, asillustrated in the top row of
Fig 2.1. Orbifold corner points are derived from rotation
axes that do lie in mirrors, as shown in the bottom half of
Fig. 2.1. Orbifolding is simply the operation of wrapping,
or folding in the case of mirrors, to superimpose all
equivalent points. There are times when the orbifolding
processitself isimportant since we may need to unfold the
orbifold partially to obtain some other (covering) orbifold
or to unfold it fully to obtain the original space (i.e., the
universal cover). Covering orbifolds are related to the

original orbifold as subgroups are related to groups (see
Appendix). The universal cover® of all Euclidean n-
orbifolds is Euclidean n-space and that for spherical n-
orbifoldsis the n-sphere.

Two topological surfaces, the 2-sphere and the 2-disk,
are of fundamental importance and can be made by gluing
cones or silvered edge disk fragments, respectively. A
sphere may be constructed by gluing the non-silvered
edges of two or more cones together, and a disk by gluing
together the bases of two or more of the silvered edge disk
fragments such as shown in Fig 2.1. We can also cut a
hole out of the interior of adisk (i.e., the part away from
the silvered edge) and glue in a cone base. Often it is ad-
vantageous to simply cut out an entire fundamental do-
main (the asymmetric unit of crystallography) and fold it
up to match all edges (2-D case) or faces (3-D case).

[ Cone

—>

a

Cone
Point

Silvered Edge
Disk Fragment

Figure 2.1. Formation of a cone and a disk
fragment from 4-fold cyclic and 4-fold
dihedral symmetries, respectively.

23 Deriving Point Group Orbifolds

There are seven main types of spherical 2-orbifolds,
one for each column in Fig. 2.3, and we derive one orbi-
fold of each type in Fig. 2.2, which has a stereographic
projection of the point group in the top of each box and
the corresponding orbifold in the bottom. We can drop the
leading letters (i.e., S, D, and RP) of the orbifold symbol,
as shown at the bottom of each box, without ambiguity.
Fundamental domains for the point groups are shaded in
Fig. 2.2. The thick solid lines denote mirrors; thin lines
the edges of various regions; solid black diads and
squares, 2- and 4-fold axes, respectively; a diad within an
open sguare, a 4 inversion axis with the inversion point in
the center of the sphere; and the thick dashed circle, an
antipodal edge that isto be self-glued by a 180° rotation.

The orbifolds that contain a silvered-edge disk
(symbol starts with D) with no cone points are simple to
derive in that all we need to do is cut along the mirrors
bounding the shaded area.

For other orbifolds, it is expedient to simply cut out
the appropriate region of the sphere on which the point
group acts and to glue the matching edges of the region



together to form a smaller surface. If the surface is a
sphere, the symbol Sis used. The gluing is fairly obvious
for $44 where we are just forming a football, but S422
requires some explanation. Since each n-fold cone point
divides the local environment into n parts, we must cut
along great circles through 2-fold axes and along mutually
normal great circles at the 4-fold axes. It does not matter
how we choose the cut lines as long as they enclose a fun-
damental domain. Points along the cut edges leading away
from the axes will be equivaent (by the symmetry of the
axis) and are to be glued together. This creates some con-
venient envel ope-type flaps, which we then bring together
to form the 3-pointed pillow orbifold S422.
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Figure 2.2. Derivation of spherical 2-orbifolds
involving four-fold symmetry operations.

For the left-hand figure of the second row of Fig. 2.2,
we first use the in-page mirror at the equator to bisect the
sphere and form a hemisphere-shaped disk with silvered
edge. We then mate the edges of the shaded 4-fold axis
sector region and flatten the hemisphere to form a silvered
edge disk, D41', with a4-fold axis cone point.

In the middle figure of the second row, we are look-
ing down a 4 axis which transforms pointo -~ X — 0 —
X — 0o with the 0’'s on the upper hemisphere and the x’s
90° away at the same latitude of the lower hemisphere.
First we cut the sphere in half along the edge of the
shaded area and close up the edges to form a new sphere
with two cone points just as we would do for S22, which
is not shown but which is analogous to S44. This new
sphere has an inversion center that equates diametrically
opposite points which we must now eliminate. We can cut
along any great circle and discard one hemisphere to fac-

tor out this spherical inversion. The new cut edge has an
antipodal relationship with equivalent points 180° apart.
The cone point can be anywhere within or upon the
boundary; but, of course, if it is on the boundary, it ap-
pears twice, 180° apart. In Fig. 2.2 it is shown centered
within the boundary, but thisis not a requirement asit was
for D41', which has no antipodal edges. In the descriptive
name RP20 for this orbifold, RP refers to the underlying
surface, areal projective plane; O stands for the antipodal
gluing on the disk; and 2 denotes the 2-fold cone point.

For the right-hand figure of the second row, we first
cut the sphere in half vertically through the 2-fold axes
and then cut along the mirrors to obtain the shaded area.
We then have to fold around the vertical 2-fold axis on the
left edge of the cut area to join the two mirror boundary
components into a single continuous mirror boundary.
Only the 2-fold axis of the 4 remains. In algebraic terms,
the 4 of the point group is generated by one of the mirrors
and a 180° rotation that doesn’t intersect the mirror (i.e.,
by the 1' and the 2).

24 The 32 Point Group Orbifolds

Our proposed graphical representations illustrating
the spherical 2-orbifolds for the 32 crystallographic point
groups are shown in Fig. 2.3 arranged as 7 columns of
topological families and 7 rows of crystallographic fami-
lies. The columns are further partitioned into 15 group
types designated by the symbols a,b,c for low cyclic; d,ef
for cyclic; g,h,i,j for dihedra; k,I,m for tetrahedral; and
n,o for octahedral. This classification is patterned after
that used by Bonahon and Siebenmann.® A tabulation of
other names and notations for the series d-o is given by
Conway. Our “low cyclic” set ab,c is not distinguished
in the classification systems of others, and that row is not
the usual one used in the crystallographic family tree; but
these starter members in their series have special proper-
ties that become apparent when one constructs subgroup
graphs (see Appendix) and crystallographic color
groups.®® We omit the icosahedral rotation groups since
their 5-fold rotation axes are not crystallographic. The
leading letter(s) of the orbifold symbols may be omitted
without ambiguity.

Thick lines and circles in these spherical orbifold
drawings represent silvered topological disks while thin
lines and circles represent the apparent edges of 2-spheres.
Dihedral corners are denoted by diads, triangles, squares,
and hexagons lying in a thick line or circle. Cone points
are denoted by the same symbolsin athin line or circle, or
they are isolated within the drawing. These symbols are
used instead of numbers for consistency with standard
crystallographic symmetry drawings. The thick dashed
circle designates an unmated projective plane edge, which
has an antipodal gluing relationship (i.e. identical points
occur half way around the edge).

An orbifold symbol is listed under each orbifold
drawing with S, D, and RP denoting sphere, disk, and real
projective plane, respectively. Mirrors are denoted by a



prime attached to a digit with 2', 3', 4', and 6' representing
dihedral corners lying in mirror intersections. Mirrors
without corners are denoted 1'. Cone points are given as 2,
3,4, and 6.
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Figure 2.3. Spherical 2-orbifolds of the 32
crystallographic point groups.

The bottom symbol under each orbifold is the inter-
national short crystallographic notation for the point group
from which the orbifold is derived, with overbars and m’s
denoting inversion centers and mirrors, respectively, and
with 2, 3, 4, and 6 describing the order of rotation axes.
All crystallographic symbols are based on group genera-
tors in a standardized geometrical setting with respect to
coordinate system basis vectors and thus depend on which
crystallographic family (i.e., row) is involved. In the
Wyckoff site symmetry tables of the ITCr,* permutation of
the symbol components may be encountered due to the
setting of the point-group coordinate-system basis vectors
relative to the unit-cell basis vectors (e.g., 62m
and 6m2). (The symbol 6 is a historical oddity of crys-
tallographic notation and is algebraically identical to 3/m.)

25 Spherical 2-Orbifoldsin Euclidean 3-
Orbifold Singular Sets

The tetrahedral Euclidean 3-orbifold for NaCl shown
in Fig. 1.3 is redrawn in Fig. 2.4 to portray how a me-

chanical draftsman might visualize the singular set of the
NaCl orbifold based on the physical shape of the Fm3m
asymmetric unit in Fig. 1.3 and the topological details
givenin Fig. 2.3 for the component spherical 2-orbifolds.

The construction of singular sets (for Euclidean 3-
orbifolds) from spherical 2-orbifolds might be considered
as agame of orbifold space dominoes. Y ou can only posi-
tion a piece next to another piece with the same pattern on
it. The rules of the game say that any two touching ele-
ments have to have a group/subgroup rel ationship.

Just as a sphere is the set of points at an arbitrarily
small distance from an arbitrary point in 3-space, the 32
spherical 2-orbifolds described previously are models for
the set of points at a small distance from an arbitrary point
in a Euclidean 3-orbifold. There are 31 types of loca sin-
gular environments and one type (S1) of nonsingular envi-

ronment.
A = Horizontal D1'
D1'
D3'3'2'
D4'3'2' . D44 D4'3'2'

D2'2'2'
Figure 2.4. Fm3m orbifold representation.

26 Surface Topology

Fig. 2.5 illustrates how rectangles when wrapped up
to superimpose identical edges give rise to five basic
topological surfaces present in the plane group orbifolds.
The other two surfaces needed are the 2-sphere and 2-disk
discussed in Sect. 2.2. The arrows on the edges of the
rectangles indicate directional specific patterns that are to
be superimposed and glued together. The projective plane
and Klein bottle surface constructions are illustrated in
two steps.

For the projective plane, the intermediate stage is a
sphere with a hole in it that has an antipodal relationship
along the gluing edge of the hole. The final step closes up
the hole by puckering two opposite points down while the
two other points 90° from the first pair are puckered up,
forming a pinched end called a crosscap. The intermediate
Klein bottle construction may be represented with an an-
tipodal gluing relation on the single edge of a Mdbius
band, indicating that points half way along the single edge



are to be glued together. The dashed curves on both of
these arerelated to glides asin Fig. 2.6.

The apparent self-intersection in the projective plane
and Klein bottle is just a limitation of illustration tech-
niques. The rules are that a manifold (or orbifold) can be
embedded in whatever dimension Euclidean space is re-
quired. The projective plane and Klein bottle can be
mapped into 4-dimensional Euclidean space with no self-
intersections. For graphical simplicity, we will always
draw the intermediate stage for these.
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Figure 2.5. Formation of 5 topological
surfaces from rectangles.

2.7 Plane Group Orbifolds

There are 17 plane groups defining the symmetry in
al patterns that repeat by 2-dimensional lattice transla-
tions in Euclidean 2-space. We will derive the 17 Euclid-
ean 2-orbifolds directly from standard crystallographic
plane group drawings. The graphic conventions of Sect.
2.4 arefollowed in this section a so.

In Fig. 2.6. the heaviest lines indicate where folding
takes place, and the shaded lines are where cutting is
done. After cutting, symmetry equivalent edges are pasted
together to form the Euclidean 2-orbifolds at the bottom
of each box.

The notation under the crystallographic drawing is the
standard plane group name and that under the orbifold
drawing is our notation for the Euclidean 2-orbifold.
“Mobius’ denotes a Mdbius band with one silvered edge,

and “Annulus’ denotes an annulus with two silvered
edges. S2222, S333, etc. are called pillow orbifolds and
have the constraint that for Sijk..., (i-1)/i + (j-1)/j + (k-1)/k
+ ... = 2. Heavy lines and circles indicate mirrors, and a
heavy dashed circle, arising from a glide, signifies a pro-
jective plane antipodal gluing edge. Primed numbers indi-
cate the corresponding rotation axis lies in a mirror form-
ing a dihedral corner, and unprimed numbers indicate
cone points.
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Figure 2.6. Derivation of the plane group
Euclidean 2-orbifolds.
Plane group p1, a torus, is not shown.

The orbifolds in the third row of boxes are derived by
using straight line cuts through 2-fold axes and appropri-
ate angular cuts at other axes to leave some flaps which
are then glued together to produce the 4- and 3-cornered
pillow spherical orbifolds. The orbifolds on row four sim-
ply require cutting along the heaviest lines in the plane
group drawings. The remaining orbifolds (rows one and
two) are derived by cutting along the heaviest lines and
along appropriate angles through the single axis pointed to
by vectors perpendicular to the ends of the heaviest lines,
then closing up the cut edges through the axis to form a
complete silvered boundary.



The annulus and Mbius band in row one are derived
from plane groups pm and cm by first cutting out an
asymmetric unit bounded by those portions of the mirrors
denoted by heaviest lines and matching the ends together.
The pl (torus) asymmetric unit requires the whole unit
cell, asisillustrated only in Fig. 2.5.

For the projective plane orbifold, RP22, 1/4 of the
unit cell is required for the asymmetric unit. At first we
choose an asymmetric unit with a 2-fold axis on each cor-
ner and fold up asindicated in Fig 2.5. This places all four
2-fold axes on the dashed circle where the antipodal rela-
tionship holds so that it looks pictorially like the D2'2'2'2'
symbol with the dashed boundary replacing the mirror
boundary. However, we then note that by moving the
asymmetric unit one quarter cell in either the x or y direc-
tion, there are now two 2-fold axes centered on opposite
sides of the asymmetric unit as shown in Fig. 2.6. Folding
about these 2-fold axes positions them in the interior of
the orbifold as shown in the RP22 orbifold figure and
there is still an antipodal relationship along the gluing
edge. Thus, we can push two nonequivalent pairs of
equivalent axes off the boundary to get two noneguivalent
axes in the interior of the projective plane orhifold, or
vice-versa, while still maintaining the antipodal gluing
edge relationship. Only the projective plane has this
amazing “sliding” gluing edge property. The Klein bottle
is related to the projective plane in that they both have an
antipodal gluing edge. However, the antipodal edge of the
Klein bottle is on a M&bhius band while that of the projec-
tive planeison adisk.

28 Lifting Plane Group Orbifoldsto Space
Group Orbifolds

The ITCr* lists the projection symmetry plane groups
along three special axes for each space group. Different
crystallographic families have different unique projection
axes. For example a cubic space groups has special pro-
jected symmetries along (001), (111), and (011) while the
orthorhombic special directions are (100), (010), and
(001). Space group nomenclature used by crystallogra-
phers also follows this trend by listing generators for each
unique axis with nontrivial projection symmetry.

Much of the orbifold topology literature (e.g., Bona-
hon and Siebenmann?®') uses a Euclidean 2-orbifold as the
base orbifold, which is lifted into a Euclidean 3-orbifold
using the Seifert fibered space approach?” while keeping
track of how the fibers (or stratifications) flow in the lift-
ing process. This works only for the 194 non-cubic space
groups since the body-diagonal 3-fold symmetry axes of
the 36 cubic space group violate the Seifert fibered space
postulates. However, there are some work-around meth-
ods using order 3 covers that let you derive the cubic
Euclidean 3-orbifolds from their corresponding ortho-
rhombic Euclidean 3-orbifold covers.

Many space groups have underlying space S® (3-
sphere) and are relatively easy to draw. Fig. 2.7 illustrates
five different fibrations of Euclidean 3-orbifolds over the

2-orbifold D4'4'2', corresponding to space groups 1422
(#97), P422 (#89), P4,22 (#93), 14,22 (#98) and P4,22
(#91), which all originate from point group 422. The base
Euclidean 2-orbifold is in the middle of Fig. 2.7 and the
Euclidean 3-orhifolds are in the top halves of the boxes
with singular set drawings in the bottom half. The num-
bers of independent Wyckoff sets (i.e., spherical 2-
orbifolds) are shown in parentheses in the smaller boxes.
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Figure 2.7. Space group orbifolds from
point group 422 and plane group p4mm.

Note the correspondence between the 3-orbifold
symbol and the singular set drawing. In P422 we are
looking down a trigonal prism fundamental domain with
vertical 4-fold axes along two edges and 2-fold axes along
the seven other edges and there are six trivalent intersec-
tions at the corners. In 14,22 the two 4-fold axes become
4-fold screws, one right-handed and one left-handed, Also
note that the twisted pair of 2-fold axes in the orbifold has
the opposite handedness to that indicated by the symmetry
symbol. In P4,22 the 4, axes become 2-fold screw axes
with 2-fold axis struts across the 2-screw loops since a 4,
axis contains both a 2-fold axis and a 2-fold screw sub-
group. The P4,22 singular set diagram is called a link
since there are no connections among the three 2-fold
axes.



It may be instructive to check the close correspon-
dence between the symbolsin Fig. 2.7 and the ITCr* space
group symmetry drawings. The fractions over certain
edges in Fig. 2.7 denote distance along the viewing direc-
tion. Thus, a 2-fold screw axis raises or lowers the in-
plane 2-fold axes by 1/4 and a 4-fold screw axis raises or
lowers them by 1/8, depending on the screw handedness.

We do not currently use this lifted 2-orbifold method
since we now prefer to construct orbifolds from the full 3-
dimensional fundamental domain, which provides a pro-
cedure valid for all space groups including the cubics.
However, most of the orbifold literature does use some
variety of the lifted base orbifold convention and the ex-
isting 3-orbifold nomenclature is based on it. The reason
is that the topological classification of 2-manifolds
(surfaces) is classical and well understood, but 3-manifold
classification is still incomplete.

29 Orbifoldsfrom Polar Space Groups

There are 65 polar (i.e., orientable) space groups. The
65 orientable Euclidean 3-orbifolds are derived and illus-
trated in Dunbar’s dissertation.'® Of the 20 polar space
groups with cyclic point groups (1, 2, 3, 4, and 6), 12 have
orbifolds with underlying space $*xS', 1 has underlying
space S'xS'xS" (torus) and the remaining 7 are Euclidean
3-manifolds with empty singular sets which are flat Rie-
mannian manifolds.?® Of the 45 polar space groups with
other point groups (i.e., 222, 422, 312, 321, 32, 622, 23,
and 432), 4 have orbifolds with underlying spaces RF®, 1
with RP*%RP? (# denotes a connected sum), 4 with lens
spaces,™ 1 with a Euclidean manifold,? and 35 with S°.

Fig. 2.8 shows the singular sets for all 35 Euclidean
3-orbifolds that have S* as their underlying topological
space. Each unique Wyckoff-set symmetry axis is labeled
2,3, 4, or 6. A letter symbol such as “I” (I = body cen-
tered) is given at each intersection to denote the invariant
lattice complex generated from this point by the space
group (see Sect. 5). The ten orbifolds in the bottom two
rows have no vertices in their singular sets and have from
one to four closed loops. The single-loop example in the
last column of the last row is a topological knot and the
remaining nine are links.*> The remaining 25 orbifolds
have either planar graph (first four of the third row) or
knotted graph singular sets. There are 12 cubic orientable
orbifolds (the ten in the top two rows and one each in the
bottom two rows), which together with those shown in the
appendix represent the 36 cubic space groups.

3. Introduction to Critical Nets

31 Crystallographic Morse Function

Our model for the crystallographic Morse function is
based on concepts familiar to crystallographers who must
deal with crystallographic three-dimensional density func-
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Figure 2.8. Singular sets for all 35 Euclidean

3-orbifolds that have S® as their underlying
topological space.

tions on a frequent basis. The density may be electron
density or nucleus thermal motion density depending on
the type of Bragg diffraction intensities measured for the
crystal structure determination, x-ray or neutron.

In calculated crystallographic density maps, the ther-
mal motion smearing factor most often used for an indi-
vidual atom is the 3-dimensional normal probability den-
sity function, which is also called the Gaussian density
function. The density function for an individual atom may
be either isotropic with spherical equidensity contours or
anisotropic with ellipsoidal equidensity contours, de-
pending on the site symmetry® for the atom within the
crystal. With neutron diffraction, there is no extra smear-
ing due to the electron orbitals within an atom since neu-
trons are primarily scattered by the point-like nucleus of
an atom and not by the electrons. For x-rays the situation
is reversed and an atomic form factor is required in addi-
tion to the thermal motion density function.
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The Gaussian density function has tails that extend to
infinity; hence if we assume all atoms are positive scatter-
ers and there is no experimental error or data truncation
(i.e., a calculated map without data truncation), the
summed density function within the crystal never goes to
zero. Thus, the tails of the therma motion density func-
tions for all the atoms in the entire crystal overlap, but the
density between atoms is considerably less than the den-
sSity at the atomic sites. This idealized global density func-
tion is the basic model on which we do critical point
analysis. We completely ignore all quantum chemistry
electron orbital effects. A topological interpretation of the
quantum chemistry effectsis given in Bader.®

32 MorseTheory

A twice differentiable single-valued function f on a
manifold M is a Morse function if at every point of zero
gradient (critical point) the Hessian matrix H of second
derivatives is nonsingular. Morse theory explores ques-
tions such as what does M know about the critical points
of f and what does f know about M. For example, if M has
the symmetry of a space group with Wyckoff singular set
w, every fixed point of w will contain one and only one
critical point from a Morse function f on that space group,
with any remaining critical points of f on lower symmetry
elements of w including the general position.

The first application of Morse theory to crystal phys-
ics was by van Hove,* who showed that certain singulari-
ties in lattice dynamics originate from crystallographic
symmetry. Morse theory has a nice qualitative treatment
in El'sgol’c.® The standard mathematical reference for
Morse theory is Milnor;® but our application, which in-
volves equivariant (i.e., group orbit compatible) topol-
ogy,* seems to require the Morse theory treatment by
Goresky and MacPherson.*

Some formal results concerning Morse functions on
orbifolds are starting to appear in the mathematical pre-
print literature (e.g., Lerman and Tolman®), but these are
primarily based on symplectic rather than Euclidean ge-
ometry (cf., Kirwan®). In our case we know the Euclidean
space analogues of our Morse functions on orbifolds are
well behaved so we can always unfold back to Euclidean
3-space for detailed analysis when necessary.

33 D-Symbal Tiling Alternative

A technique related to our Morse function critical net
approach is the Delaney-Dress D-symbols method used by
Dress, Huson, and Molnar* and Molnér.* That method
uses topological space tiling, which is currently more
automated but perhaps less general in its crystallographic
applicability than ours. The space tiles are based on four
types of special positions interpretable as vertices, edges,
faces, and centers of polyhedra. The method produces a
decomposition of each polyhedron into component sim-
plex tetrahedra. The critical net and the D-symbol ap-

proaches lead to identical results in seven of the nine
families where their method applies.

Their “special rhombohedral”* tiling example, which
is not a Morse function, is actually body-centered cubic
based on vertex (atom) positions asillustrated later in Fig.
3.4 and Fig. 4.2. Their “covered rhombohedron”* is not a
Morse function either since there are not enough pales to
fill al the faces. As mentioned previously, our working
hypothesis is that all real crystal structures are Morse
functions (i.e., they have no degenerate critical points).
Degenerate critical points suggest structural instability,
which should be present only during dynamic processes
such as phase transitions.

The D-symbol computational method was also used
to derive orbifold singular set components and their graph
connectivity but not the full space group orbifolds.* The
combinatorial graph connectivity distinguishes 175 of the
219 affine space group types. The remainder of the 219
may be digtinguished using abelian invariants.

34 Chemical Facesand Cages

The following chemically-oriented nomenclature al-
lows structural chemistry intuition to be used more easily
in interpretation of critical net drawings. First, we note
that peaks always represent atoms and passes sometimes,
but not always, represent chemical bonds. We define a
“chemical face” in acritical net as a (generally nonplanar)
disk containing one pale bounded by a graph circuit con-
taining alternating peak and pass nodes with edges along
their interconnecting separatrices. A “chemical cage” is
defined as a configuration of chemical faces that encloses
one pit. A chemical cage is a convex polyhedron only in
the simplest cases such as the primitive cubic critical net.

A detailed list of our observed critical net properties
is given in Sect. 3.10, but in general, the universal geo-
metric pattern in critical nets is: (a) the three or more
passes attached to a pale will be approximately coplanar
with the pale, and the approximately plane-normal criti-
cal-net connection at the pale will go to two pits, one on
each side; and (b) the three or more pales attached to a
pass will be approximately coplanar with the pass, and the
approximately plane-normal critical-net connection at the
pass will go to two peaks, one on each side. It is advisable
to forgo al the distance and angle metric local detail so
characteristic of structural crystallography while doing
crystall ographic topology.

35 Diamond Critical Net

Fig. 3.1 is a drawing of one chemica cage and the
neighboring pits for the diamond structure (space group
Fd3m). It has non-planar chemical faces and thus the dia-
mond chemical cage is not a convex polyhedron. In dia-
mond, there is one unique tetrahedral chemical cage with
chair-shaped chemical faces.
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Figure 3.1. Critical net illustration of diamond.
36 Graphite Critical Net

The peak, pass, pale, and pit critical points for the
P6./mmc graphite structure, illustrated in Fig. 3.2, are at
Wyckoff sites b+c, at+h, d+g, and f (with z = -.03), re-
spectively. Two symmetry equivalent chemical cages are
shown in the graphite illustration to clarify the packing
arrangement. If one is conditioned by training to always
look for convex polyhedra with atoms at the vertices, the
single unique tetrahedral chemical cage with one planar
and three chair-shaped chemical faces might mistakenly
be interpreted as a hexagonal prism polyhedron with three
of the vertex atoms pinched together at one end of the
prism. The disturbing feature of the prism interpretation is
the existence of a pseudo face of zero area in the pinched
end of the prism. We call this the “graphite paradox.” All
the graphite chemical bonding isin the flat six-membered
chemical face of the tetrahedron.

Figure 3.2. Critical net illustration of graphite.

3.7 Hexagonal Diamond Critical Net

In addition to the cubic diamond and hexagonal
graphite structures shown above, there is a third simple
carbon structure called hexagonal diamond,*” which has
the same space group as graphite (P6;/mmc). Its critical
net is illustrated in Fig. 3.3. This structure is not widely
known since the material is hard to find in natural sources
and is difficult to synthesize. It has both boat- and chair-
shaped six-membered rings and two different chemical
cages. The graphite and hexagonal diamond critical nets
may seem quite different, but they are topologically re-
lated through duality as shown in Sect. 5. and Fig. 5.4.

Figure 3.3. Critical net illustration
of hexagonal diamond.

38 Body-Centered Cubic (BCC) Critical Net

Using the bcc structure of space group Im3m as a
template, binary compounds can also be fitted into the
same basic structure. For example, the Fd3m space group
can accommodate two different atoms on the two 43m
sites asillustrated in Fig. 3.4, which shows five chemical
cages. The lattice complex splitting equation |,=D+D"
given in Sect. 5.3 tells us that two equal atoms on
Wyckoff sites aand b of Fd3m are equivalent to one atom
on site a of Im3m when the unit cell parameters of the
former are double those of the latter. This bce derivativeis
our Morse function alternative to the special rhombohe-
dron tiling of Dress, Huson and Molnar.®*

Bcc is the ultimate example of warped chemical
faces. There are four puckered chemical faces, each con-
taining four peaks and four bonds in a chemical cage. The
pales in the four faces have a square planar arrangement
about the pit while the 6 peaks are octahedral about the pit
because of the vertex sharing arrangement.
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Figure 3.4. Critical net illustration
of body-centered cubic derivative.

39 Basic Beryllium Acetate Critical Net

The cubic organometallic compound basic beryllium
acetate [Be,O(CH,COQ,),, Fd3, a=15.744 A, Z=8] has eight
atoms in the asymmetric unit and orientationally disor-
dered methyl groups.® A molecular compound such as
this can display a rather complex critical net that is diffi-
cult to solve using simple trial and error methods and the
disorder increases the complexity. Fig. 3.5 illustrates a
key portion of the network which has a pit on a 3 center
connecting six pales centered within hexagonal rings of
two neighboring molecules. The opposite sides of the
pales connect to symmetry equivalent 3 centers. The oxy-
gen atom spheresin Fig. 3.5 are dightly larger than those
for other atoms, and the beryllium atom spheres have a
shaded octant, For graphics clarity, hydrogen atoms have
been omitted from the methyl groups, and only half of
each moleculeis shown.

Figure 3.5. Part of critical net
for basic beryllium acetate.

3.10 Critical Net Characteristics

Below are some definitive characteristics that are
useful for finding and analyzing critical nets for very sim-
ple structures. For more complex structures, critical point
positions and the canonical paths joining them can be de-
termined numerically from calculated global Gaussian
thermal motion density maps based only on given atomic
(i.e., peak) positions. The author’s ORCRIT program for
protein electron density map interpretation,® originally
written in 1977, could be modified for that purpose. High
precision experimental electron density maps from x-ray
data and charge density maps calculated by ab initio
quantum chemistry programs are more complicated than
those considered here because of the possible addition of
new critical points caused by bonding electrons etc.

e Peaksare at atom positions.

e Pitsare asfar from al adjacent peaks as possible, but
there is always an ancillary steepest gradient path
leading directly from the peak to each adjacent pit.

e A passlies between two adjacent peaks.

e A palelies between two adjacent pits.

« A palelieson or close to the plane perpendicular to
each adjacent pass' unique axis (i.e., the symmetric
cross section of the cigar-shaped pass).

e A passlieson or close to the plane perpendicular to
each adjacent pale’s unique axis (i.e., the plane of the
pancake-shaped pale).

« Each fixed point Wyckoff position of the space group
must contain acritical point of the crystal structure.

e Wyckoff positions with the cubic site symmetries for
tetrahedral (23, m3 and 43m) and octahedral (432
and m3m) point groups can only accommodate peaks
or pits, not passes nor pales, because of their body-
diagonal 3-fold axes. All of the other 32 - 5 = 27 pos-
sible point group site symmetries in a space group can
accommodate any of the four critical points.

e The critical net is composed of interconnected
“twisted HS" with pairs of peaks and pits at the ends
of the two inclined non-parallel uprights and a pass
and a pale at the ends of the horizontal connector,
which is the shortest vector between the two non-
parallel uprights.

e The twisted-H torsion angle about the pass-pale vec-
tor ranges from about 45° (e.g., bcc) to 90° (e.g., sSim-
ple cubic).

e Critical nets always maintain a peak-pass-pale-pit vs.
pit-pale-pass-peak dudlity, that is the naming of the
critical point sites can be reversed to produce a hew
valid Morse function. For example, the body-centered
cubic structure with unit cell critical point counts of 2
peaks, 8 passes, 12 pales, and 6 pits, represented sim-
ply as (2,8,12,6) and which is the lattice complex “1”,
forms an “inverted” dua structure (6,12,8,2), lattice
complex “J*”, if atoms are removed from the bcc
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