LEVEL-3 Organo-transition metal chemistry

TEXTBOOK REFERENCES:

- 1. Housecroft & Sharpe *Inorganic Chemistry* Ch 23
- 2. Shriver & Atkins Inorganic Chemistry Ch 16
- 3. Elschenbroich & Salzer *Organometallics a* concise introduction Chs 13, 14 & 15
- 4. Cotton & Wilkinson Advanced Inorganic Chemistry
 5th Edition Chs 22-27

Level-3 Organometallics L1a

Brief history:

1825 - W. C. Zeise (Denmark) reacts Pt(2+) salts with ethanol. Originally formulated as KCl.PtCl₂.EtOH. In 1950's this was shown to be an **olefin** complex K^{+} [PtCl₃(CH₂=CH₂)]- .H₂O (see Organometallics (2001) **20** 2)

1849 - E. Frankland (UK) synthesised first **metal alkyl** $3Zn + 3C_2H_5I \rightarrow ZnI_2 + ZnI(C_2H_5) + Zn(C_2H_5)_2$ solid liquid $ZnEt_2$ is **pyrophoric** - inert atmosphere required

1890 - L. Mond (Germany/UK) discovered **metal carbonyls** $Ni + 4CO \Leftrightarrow Ni(CO)_4$ Soon after Fe(CO)₅ and Cr(CO)₆ sythesised

1930's - W. Hieber (Germany) worked on carbonyl chemistry of Fe $Fe(CO)_5$ + en (ethylene diammine) $\rightarrow Fe(CO)_3$ (en) carbonyl substitution

$$Fe(CO)_5 + 2 OH^- \rightarrow [HFe(CO)_4]^-$$
 carbonylate anion $+ H_3O^+ \rightarrow H_2Fe(CO)_4$ metal hydride

1951 - Pauson synthesises ferrocene (C_5H_5)₂Fe - "sandwich"

1955 - E.O. Fischer $(C_6H_6)_2$ Cr dibenzene chromium

1961 - Vaska shows $Ir(CO)Cl(PPh_3)_2$ reversibly binds dioxygen

1964 - E.O. Fischer makes first carbene $(CO)_5W=C(OMe)Me$

1973 - E.O. Fischer makes first carbyne $(C_5H_5)(CO)_2W\equiv CPh$

Level-3 Organometallics L1b

DEFINITION:

Organometallic compound contains a bond between a *transition* metal and an organic carbon

Nowadays vast numbers of different organometallics are known

Need to **organise** all this information in order to understand and process

One way is by considering by *ligands* rather than by *metals*

Two major classes of ligands (a) sigma-bonded

Examples alkyls $M-CH_3$ $M-C_2H_5$

aryls $M-C_6H_5$ (phenyl)

acyls M-C(O)-R e.g. acetyl

vinyls M-CH=CH₂

(b) pi-bonded

carbonyls M-CO carbenes $M=CR_2$

olefins $M(CR_2=CR_2)$

cyclic olefins $M(C_5H_5)$

[&]quot;Honary" organometallic compounds Pt(PPh₃)₄

Level-3 Organometallics L1c

Metal - sigma bonded compounds (metal alkyls)

Main group alkyls known from beginning ZnEt₂ PbEt₄ Quite stable (thermodynamically!) but it was found that synthesis of *transition metal* alkyls was difficult - i.e. didn't work

Some exceptions Pope & Peachy (1901)
$$PtCl_4 + 3CH_3MgI \rightarrow [(CH_3)_3PtI]_4 \text{ "cubane"}$$

$$(C_5H_5)Fe(CO)_2(CH_3)$$

The latter type had π -acceptor ligands and it was thought that these might stabilise TM-C(alkyl) bonds

In 1950's several theoretical (MO) calculations showed that TM-C(alkyl) bonds were especially weak due to poor overlap between sp^3 C and metal sp d orbitals. π -acceptor ligands were "shown" to increase overlap and so stabilise these compounds.

However, all these calculations were incorrect. In fact TM-C(alkyl) bonds have similar strength to Main-group- C(alkyl) bonds

compare	TiEt ₄	v unstable decomposes at -80°C
	$PbEt_4$	stable to 200°C
BUT	Ti-C	~ 260 kJ mol ⁻¹
	Pb-C	~ 170 kJ mol ⁻¹

Confusion between thermodyamic stability and kinetic stability

Level-3 Organometallics L1c The general β -elimination mechanism

One general decomposition mechanism involves \(\beta\text{-elim.nation}, \text{ resulting in a metal } \text{hy-} dride and an olefin:

CHR CH2 CN = n+1

Level-3 Organometallics L2a

β-Elimination Mechanism

H/S p 603

E/S page 198 S/A 510 & 558

The β -elimination mechanism is the *primary route* for the decomposition of TM-alkyls where the alkyl group contains a β -H atom. It has a very low activation barrier if the transition state is easily attained and means that most such TM-alkyls will spontaneously decompose.

The mechanism has four major requirements or consequences

- presence of β -H
- planar four-membered transition state
- vacant coordination site (more strictly vacant orbital on TM)
- alkene is formed as by-product

These features lead to ways in which this mechanism can be circumvented and lead to designed synthesis of stable TM-alkyls

Level-3 Organometallics L2b

β -Elimination Mechanism

(1) Use alkyls without β -Hydrogens

Alkyls with no β -hydrogens cannot decompose by this mechanism and are found to be much more stable

Common examples of such alkyls are:

-CH₃ (methyl) -CH₂Ph (benzyl) -CH₂CMe₃ (neopentyl)

- CH_2SiMe_3 (trimethylsilyl) perfluoroalkyls e.g. - C_2F_5

For instance $Ti(CH_2CMe_3)_4$ is stable above its boiling point of $90^\circ C$ compared with $TiEt_4$ decomp above $-80^\circ C$

Perfluroalkyl complexes are particularly stable, in part due to the strength of the C-F bonds

Level-3 Organometallics L2c

β -Elimination Mechanism

(2) Absence of free coordination site

18-electron TM complexes do not have a suitable vacant orbital. To generate one, it is necessary to *lose* one or more ligands.

Mechanistic studies show that in general, prior ligand dissociation is a *requirement* for an 18-electron compound to undergo β -elimination.

If ligands are strongly bonded, this may not be easy

EXAMPLE: $CpFe(CO)_2(C_2H_5)$ Cp (cyclopentadienyl C_5H_5)

Both the Cp and CO ligands are strongly bonded and this compound is reasonably stable - will decompose through loss of CO though at elevated temperatures.

EXAMPLE:

compare $Rh(C_2H_5)(CO)_2(PPh_3)_2$ unstable - Rh(1+) is 5 coordinate $[Rh(C_2H_5)(H_2O)_5]^{2+}$ stable - Rh(2+) is 6-coordinate

Stability as used here is *relative* stability.

Level-3 Organometallics L2d

β -Elimination Mechanism

(3) β -Hydrogens cannot become syn-coplanar

With bulky alkyl groups, it may not be sterically possible for the $\beta\text{-H}$ to get close to the metal

EXAMPLE - $Cr(CMe_3)_4$ is a reasonably stable *tetrahedral* metal alkyl. Although the tert-butyl group *does* contain β -H's, the bulkiness prevents these H-atoms from getting too close to the metal

EXAMPLE -

$$Cp(CO)_2Mo$$
 CMe_3
 M
 $metal\ vinyl$
 $metal\ aryl$

In both these examples, the sp^2 carbon requires 120° angles and the β -H cannot approach the metal.

EXAMPLE - here the transition state cannot become syn-coplanar because atoms are fixed in ring system.

Level-3 Organometallics L2e

β -Elimination Mechanism

(4) Absence of suitable alkene

Bredt's rule states that double bonds to bridgehead carbon atoms are *highly unfavorable* because of ring-strain. Since such alkenes are either unknown or unstable, their formation in a β -elimination is unfavorable. This gives high kinetic stability to alkyl groups such as 1-norbornyl

Tetrahedral complexes ML_4 These are known for Cr, Mn, Fe & Co - metals in +4 oxidation state which is very unusual for these metals.

Another reason why metal aryls cannot β -eliminate is that the corresponding alkene is in fact benzyne - a highly strained internal alkyne.

Level-3 Organometallics L2f

Synthesis of stable metal alkyl compounds

The ideas just given can be used to devise syntheses of stable TM-alkyls and other complexes containing TM- $\sigma(C)$ bonds. The examples given also illustrate some important chemistry of organo-transition metal compounds.

(1) Metal halide plus Main group organoreagent

Best organoreagents (most reactive) are Lithium reagents LiR or Grignard reagents RMgX

EXAMPLE

 $ZrCl_4 + 4 PhCH_2MgCl \rightarrow Zr(CH_2Ph)_4$ - tetrahedral complex

Also can use milder reagents such as $R_2 Zn$ or $R_2 Hg$ (note $Me_2 Hg$ is extremely poisonous) or $R_4 Sn$

These will generally not replace all halides

EXAMPLE

 $NbCl_5 + (excess) Me_2Zn \rightarrow Me_2NbCl_3$

These may be useful to prepare mixed-alkyl complexes

Level-3 Organometallics L3a

Synthesis of stable metal alkyl compounds

(2) Metal hydride plus alkene

This is the *reverse* of the β -elimination reaction and is an example of the general *insertion* reaction. These involve insertion of small molecules into transition metal-X bonds. In this case that of an alkene into a TM-H (hydride) bond.

EXAMPLE

$$trans$$
- $(Et_3P)_2PtHCl + C_2H_4 \rightarrow trans$ - $(Et_3P)_2PtCl(C_2H_5)$

In this example the resulting ethyl complex is stable because the d^8 platinum Pt(2+) atom strongly prefers square-planar geometry.

A related route is insertion of a carbene into a TM-H bond

EXAMPLE

$$CpMo(CO)_3H + CH_2N_2 \rightarrow CpMo(CO)_3(CH_3)$$

 CH_2N_2 is diazo-methane - an unstable molecule which acts as a source of the reactive intermediate " CH_2 "

Level-3 Organometallics L3b

Synthesis of stable metal alkyl compounds

(3) Metal based nucleophile plus alkyl/acyl halide

This is closely related to the nucleophilic displacement reaction in organic chemistry

$$Nu^- + RX \rightarrow NuR + X^-$$

The nucleophile used are *metal centered* nucleophiles and are electron rich TM compounds. The most commonly used are *metal carbonylate anions*. Made with strong reducing agents such as sodium amalgam (Na/Hg)

FXAMPLE

$$Mn_2(CO)_{10} + Na/Hg \rightarrow 2 Na^{\dagger} [Mn(CO)_5]^{\dagger}$$

Cleave Mn-Mn bond and reduce Mn to Mn(-1)

$$Na^{+}[Mn(CO)_{5}]^{-}+CH_{3}I\rightarrow CH_{3}Mn(CO)_{5}$$

EXAMPLE

$$[CpFe(CO)_2]_2 + Na/Hg \rightarrow Na^{\dagger} [CpFe(CO)_2]^{\dagger}$$

$$C_2H_5I \rightarrow CpFe(CO)_2(C_2H_5)$$

 $CH_3COCI \rightarrow CpFe(CO)_2C(O)CH_3$
acyl complex

Level-3 Organometallics L3c

Synthesis of stable metal alkyl compounds

(4) Oxidative addition of alkyl halide to 16 e $^-$ complex Many 16 e $^-$ compounds with a $d^{\,8}$ or $d^{\,10}$ configuration react with alkyl halides

Metals undergo change of +2 in oxidation level. Very common for square-planar d^8 complexes

square-planar
$$Rh(+1)$$
 $Pd(+2)$ $Pt(+2)$ $qoes to$ octahedral $Rh(+3)$ $Pd(+4)$ $Pt(+4)$

Oxidative addition requires:

- metal has two accessible oxidation states differing by +2
- metal has vacant coordination sites

Also possible for zerovalent d^{10} compounds

Level-3 Organometallics L3d

Reactions of metal alkyls

(1) Decomposition

Main route is by β -elimination. Experimental evidence to support mechanism :

• from labelling studies it is proved that β -hydrogen is transferred

$$(Bu_3P)CuCH_2CD_2Et$$
 \rightarrow " $(Bu_3P)CuD$ " $+ CH_2=CDEt$ not detected CH_2DCD_2Et

 necessity of vacant coordination site shown by inhibition of reaction with added PPh₃

$$CpFe(alkyl)(CO)(PPh_3) \rightarrow CpFeH(CO)(PPh_3) + alkene$$

 best evidence comes from structures of alkyl complexes which show "agostic" interactions

Ti(dppm)
$$Cl_2(CH_3)$$
 [$CpCo(PR_3)(C_2H_5)$]⁺ agostic methyl

Level-3 Organometallics L3e

Reactions of metal alkyls

(1) Decomposition

Other routes are by α -elimination

EXAMPLE: WMe₆
$$\rightarrow$$
 3CH₄ + 3"W(CH₂)₃" (unknown polymer)

or by reductive elimination - reverse of oxidative addition

requires that groups eliminated are cis

(2) Insertion reaction

Many small molecules with multiple bonds (e.g. CO_2 , CS_2 , NO) will insert into M-C bonds. Most important is CO

EXAMPLE: $(CO)_5MnCH_3 + CO \rightarrow (CO)_5MnC(O)CH_3$ new acyl bond

Mechanistic studies show that

- the CO in the acyl groups comes from already coordinated CO
- incoming CO is cis to the acyl group

Level-3 Organometallics L3e

Reactions of metal alkyls

(1) Decomposition

Other routes are by α -elimination

EXAMPLE: WMe₆
$$\rightarrow$$
 3CH₄ + 3"W(CH₂)₃" (unknown polymer)

or by reductive elimination - reverse of oxidative addition

requires that groups eliminated are cis

(2) Insertion reaction

Many small molecules with multiple bonds (e.g. CO_2 , CS_2 , NO) will insert into M-C bonds. Most important is CO

EXAMPLE: $(CO)_5MnCH_3 + CO \rightarrow (CO)_5MnC(O)CH_3$ new acyl bond

Mechanistic studies show that

- the CO in the acyl groups comes from already coordinated CO
- incoming CO is cis to the acyl group

Level-3 Organometallics L4a

Complexes with unsaturated alkyl groups

Some alkyl groups have unsaturated functionality next at the $\alpha\text{-}C$ atom

These have possibility for π -bonding to metal atom. Structural evidence suggests this is not happening.

EXAMPLE trans-PtCl(PPhMe2)2R

	obs Pt-C (Å)	calc Pt-C (Å)
CH ₂ SiMe ₃	2.08	2.01
CH=CH ₂	2.03	1.98
<i>C</i> ≡ <i>C</i> Ph	1.98	1.91

Unsaturated functionality *can* be bonded to another metal. example below is a bridging vinyl group

$$Fe_2(CO)_9$$
 + $Fe(CO)_3$ Fe $Fe(CO)_3$

Level-3 Organometallics L4b

Complexes with π -acceptor ligands

There are many of these type of ligand (E/S Ch 15 S/A Ch 16) Some bond to metal through *one* atom - described as η^1 (eta-one) ligands, while others (described later) bind through more than one.

Examples of η^1 ligands

M-CO M-PR₃ M-CNR M=CR₂ M
$$\equiv$$
CR M-CS M-NO carbonyl phosphine isocyanide carbene carbyne thiocarbonyl nitrosyl isonitrile alkylidene alkylidyne

Conveniently classed together because bonding to TM is very similar in all cases - involves synergic bonding also called back-bonding

Evidence for back-bonding (E/Salzer pp 226-231)

- bond lengths increases the strength, hence reduces the length of M-C bond but decreases the strength, hence increases the length of the C-O bond. Not easy to see latter.
- C-O stretching frequencies this is very sensitive to extent of backbonding. For neutral (i.e. uncharged) complexes the range of frequencies allows distinction between terminal bridging and triply-bridging bonding

Level-3 Organometallics L4c

energy-level diagram for CO

(a) Bonding modes of the carbonyl group

The change in vibrational stretching frequencies v_{co} is quite characteristic

	Free	Terminal	μ_2 -CO	μ_3 -CO
	о Ш с	00-1	, e	M C. M.M
v _∞ (cm ⁻¹)	2143	1850-2120	1750-1850	1620-1730

Level-3 Organometallics L4d

M-C bonding in CO complexes

There are three components to the bonding between CO and TM

(i) σ -donation from CO σ^* level (5 σ)

(ii) π -donation from CO 1π

(iii) π -acceptor from metal to CO $2\pi^*$ filled empty

Level-3 Organometallics L4e

M-C bonding in CO complexes - the actual orbitals

Level-3 Organometallics L5a M-C bonding in CO complexes

All these interactions result in strengthening of the M-C bond.

Much evidence that this is case, e.g. for W-C distances $W(CO)_6$ 2.06 Å WMe_6 2.15 Å $W(=CH_2)$ 1.94 Å

Difficult to separate effects of 3 components in metal complexes.

Evidence for σ -donor orbital (cases where *no* π -bonding is possible)

- Lewis adduct $H_3B\leftarrow CO$. Complex has v(CO) at 2164cm⁻¹, free CO at 2143cm⁻¹ therefore C-O bond order is *increased* with σ -donation, as predicted.
- Same for *cationic* metal carbonyls e.g. linear $[Hg(CO)_2]^{2+}$ v(CO) 2164cm⁻¹ only stable in highly acid solvents (CO is very poor σ -donor)

Back-bonding is *very* effective in reducing formal charge on a transition metal. Therefore CO is a very good ligand for stabilising metals in electron rich LOW oxidation states.

Charge on a complex has great effect on v(CO)

complex	[V(CO) ₆]	Cr(CO) ₆	$[Mn(CO)_6]^{\dagger}$
v(CO) cm ⁻¹	1860	2000	2090

Due to differing degrees of back-bonding.

Level-3 Organometallics L5b

Super-reduced carbonylate anions

CO can stabilise TM's in unusually low oxidation levels

EXAMPLE $Mn_2(CO)_{10}$ Mn(0)

 $Mn_2(CO)_{10} + Na/Hg \rightarrow [Mn(CO)_5]^T Mn(-1)$

with stronger reducing agents (e.g. $Na^+ C_{10}H_{8}^-$) possible to get lower - super reduced carbonylate anions

 $Na_{3}^{\dagger} [Mn(CO)_{4}]^{3}$ Tetrahedral - unstable explosive Mn(-3)!!

Other examples made in a similar fashion. Strong back donation shows in v(CO) for series $[M(CO)_4]^{n-}$

	Ni	Со	Fe	Mn	Cr
charge n	0	-1	-2	-3	-4
v(CO) cm ⁻¹	2040	1890	1729	1670	1462

In -3 oxidation state $M(CO)_{5}^{3}$ V, Nb, Ta

 $M(CO)_4^{3-}$ Mn, Re

 $M(CO)_3^{3-}$ Co, Rh, Ir

In -4 oxidation state $M(CO)_4^{4-}$ Cr, Mo, W

Level-3 Organometallics L5c

Super-reduced carbonylate anions

High negative charge is delocalised by carbonyl ligands

The formal high negative charge on the metals makes these ions extremely powerful metal-centered nucleophiles

EXAMPLES
$$[Mn(CO)_4]^{3^-} + 2Ph_3SnCl \rightarrow [Mn(CO)_4(SnPh_3)_2]^- \text{ (mono-anion)}$$

$$[Mn(CO)_4]^{3-} + 3Ph_3PAuCl \rightarrow Mn(CO)_4(AuPPh_3)_3$$

Level-3 Organometallics L5d

Other pi-acceptor ligands

The principles of bonding of CO to TM's applies in a very similar way to other π -acceptor ligands. However, there are always some differences/idiosyncracies

Dinitrogen (N₂)

Isoelectronic with CO, but not charge-polarised. Much poorer σ -donor and π -acceptor than CO.

Can bind in η^1 -mode as M-N₂ but also bridging M-N=N-M

Nitrosyl (NO)

Binds either terminal or bridging as CO.

Linear M-N-O angle 180-160° this is formal 3-electron donor Bridging also 3-electron donor

Bent M-N-O angle 140-120° formal 1-electron donor

Isocyanide (RNC)

Isoelectronic with CO. Generally better $\sigma\text{-donor}$ and poorer $\pi\text{-}$ acceptor then CO, but this is a "tunable" ligand. Varying R-group changes properties, i.e. electron donating R group e.g. CMe3 make for better $\sigma\text{-donor}$, while electron withdrawing R-group e.g. CF3 make for better $\pi\text{-acceptor}$

 σ -donor and π -acceptor properties are synergic

Level-3 Organometallics L5e

Other pi-acceptor ligands

Phosphine/phosphite PR₃ P(OR)₃

Also AsR₃ (arsines) SbR₃ (stibines) SR₂ (thio-ethers)

Generally better σ -donor and poorer π -acceptor then CO, but again these are "tunable" ligand. Varying R-group changes properties.

How to separate σ -donor and π -acceptor properties ?

Not easy - use v(CO) in compounds such as $Mo(CO)_3(L)_3$ as "indicator" of backbonding

$L_3Mo(CO)_3$	ν(CO) cm ⁻¹	
L = PF ₃	2055, 2090	L very strong π -acceptor
L = PPh ₃	1835, 1934	
L = pyridine	1746, 1888	L is "pure" σ-donor

Note values of v(CO) !!!

Using this, it is possible to "rank" ligands in order of $\pi\mbox{-acceptor}$ strength

$$NO > CO > RNC > PF_3 > P(OR)_3 > PR_3$$

Level-3 Organometallics L6a

Alkene complexes - Dewar/Chatt/Duncanson model H/S 587-590 S/A 561-570 E/S 256-265

Two components

- σ -donation from alkene π -orbital to metal σ -orbital (s, p_z or d_{z2})
- π -donation from metal d-orbital to alkene π^* orbital

Evidence for this model?

1. Structural data

(a) bond distances

Zeise's salt $[PtCl_3(C_2H_4)]^-$

C-C distance = 1.37\AA C-C distance in free ligand = 1.35\AA

Conclusion: in this complex most of bonding is ligand \rightarrow M σ -donation

Both components strengthen M-C bonds and weaken C-C bonds, but π -donation has greatest effect in weakening C-C bond

Level-3 Organometallics L6b

Alkene complexes - Dewar/Chatt/Duncanson model

(b) bond angles

When backbonding occurs, hybridisation of alkene C- atoms changes from sp^2 to approaching sp^3 . This has an implication for the bond angles $(sp^2 C$ -atom is planar $sp^3 C$ -atom is pyramidal)

So - substituents "bend-back" from the metal - the greater the π -donation the greater the bend-back.

C-C distances $C_2H_4 = 1.35 \text{ Å}$

 $C_2F_4 = 1.40 \text{ Å}$

Rh-C distances $C_2H_4 = 2.16 \text{ Å}$

 $C_2F_4 = 2.02 \text{ Å}$

More π -donation in C_2F_4 ligand because F atoms are electron withdrawing.

 $CpRh(C_2H_4)(C_2F_4)$

"Bend-back" angle $C_2H_4 = 17^{\circ} C_2F_4 = 37^{\circ}$

Epoxide

(η²-Tetracyanoethylene)Ni complex (nickelacyclopropane)

Alkene complexes can also be thought of as metallacyclopropanes Two approaches are complementary.

Level-3 Organometallics L6c Alkene complexes - Dewar/Chatt/Duncanson model

(2) Hindered rotation of coordinated alkenes

Alkenes can rotate about M-C=C axis

- M alkene σ -bond is *invariant* to rotation (does not affect overlap)
- M alkene π -bond is strongly dependent on rotation angle

Thus there is a energy cost (and hence a *energy barrier*) to this rotation. Barrier is of the size which can be detected by variable temperature NMR spectroscopy

Level-3 Organometallics L6d Alkene complexes - Dewar/Chatt/Duncanson model

H-NMR spectrum of C₅H₅Rh(C₂H₄)₂ (200 MHz).

Level-3 Organometallics L6e Alkene complexes - Dewar/Chatt/Duncanson model

Level-3 Organometallics L7a Metal hydride complexes

 $KReO_4 + K/EtOH \rightarrow "K_2Re"$ white crystalline solid

Modern techniques X-ray, NMR not available. Compound actually contains the anion $[ReH_9]^{2-}$ - an 18 electron complex !!

Only other well characterised *pure* hydride complex is Mg_2FeH_6 contains octahedral $[FeH_6]^{4-}$ also 18 electron compound

Most hydride complexes contain other ligands, usually π -acceptor ligands like CO, C_5H_5 or phosphine PR_3

Earliest examples made by protonation of metal carbonylate anion. Commonest way of making hydrides.

EXAMPLES
$$[\mathsf{Mn}(\mathsf{CO})_5]^{\scriptscriptstyle -} + \mathsf{H}^{\scriptscriptstyle +} \to \mathsf{HMn}(\mathsf{CO})_5 \quad \text{volatile yellow liquid} \quad \delta(^1\mathsf{H}) -7.5 \\ \text{stable at 0°C} \\ [\mathsf{Fe}(\mathsf{CO})_4]^{^2-} + 2\mathsf{H}^{\scriptscriptstyle +} \to \mathsf{H}_2\mathsf{Fe}(\mathsf{CO})_4 \quad \text{decomp -10°C} \quad \delta(^1\mathsf{H}) -11.1 \\ \downarrow \\ \mathsf{Fe}_3(\mathsf{CO})_{12}$$

Level-3 Organometallics L7b Metal hydride complexes

How to detect metal-hydrides?

1. The *negative* chemical shifts in ¹H NMR are very diagnostic - no other type of H found here. Shielding due to non-local paramagnetic contribution from metal.

 $\begin{array}{lll} \text{Terminal M-H} & \delta \text{--}5 & \rightarrow \text{--}15 \text{ ppm} \\ \text{Bridging M-H-M} & \delta \text{--}10 & \rightarrow \text{--}30 \text{ ppm} \\ \end{array}$

2. M-H stretch in IR at \sim 2000 cm⁻¹. Only CO stretches found in this region. M-H stretch first detected in Cp₂ReH.

For bridging hydrides M-H-M stretch is ~ 1600 cm⁻¹ and very weak and broad.

3. Diffraction. X-ray not a lot of good since H atoms do not have much electron density.

Neutron diffraction much better - but serious drawbacks

- (i) need neutron source nuclear reactor
- (ii) need very large crystals difficult to grow

Level-3 Organometallics L7c Metal hydride complexes

How are hydrides coordinated to metals?

1. Terminal hydrides - normal coordination geometries

2. Bridging hydrides - very common in bimetallic and cluster compounds

$$[HFe2(CO)8]-$$

$$(CO)4Fe Fe(CO)4$$

Has 3c-2e bond like B-H-B bond in boranes. This type of bonding has the effect of

- weakening Fe-Fe bond longer than in [Fe₂(CO)₈]²⁻
- $^{\circ}$ lowers metal-H stretch to $\sim 1700 1500 \text{ cm}^{-1}$
- 3. Encapsulated hydrides completely inside metal cage $[HCo_6(CO)_{15}]^{-}$ CW/5 p 1111 E/S p 408 $\delta(^1H)$ +23 ppm

Level-3 Organometallics L7d

Metal hydride complexes

86 VE

[HCo₆(CO)₁₆]

4. Polyhydrides - many examples with Mo and W. Have unusual properties - very fluxional

e.g.
$$WH_6(PR_3)_3$$
 $RuH_4(PR_3)_3$

Because of small size, it is possible to pack several hydrides round metals in bimetallic polyhydrides

Ru=R triple bond

$$Cp_2Ru_2H_4$$
 Ru-Ru = 2.46 Å
normal Ru-Ru = ~ 2.9 Å

Some polyhydrides contains dihydrogen ligands

Level-3 Organometallics L7e Metal dihydrogen complexes

 $RuH_4(PR_3)_3$ is actually

most examples of dihydrogen compounds are octahedral

Bonding has σ -donation and π -backdonation components. Most important is σ -donation. Too much π -backdonation leads to breaking of H-H bond giving *cis* dihydride

pi back donation

sigma donation

How to characterise dihydrogen ligands?

1. Diffraction

Neutron diffraction is definitive way - but not always possible to get suitable crystals

Level-3 Organometallics L7f Metal dihydrogen complexes

2. Spectroscopic characterisation

In IR, the H-H stretch should give weak absorption at ~2400cm⁻¹

$FeH_4(PEtPh_2)_3$	has H-H	2380 cm ⁻¹
	and Fe-H	1880 cm ⁻¹
but in RuH ₄ (PPh ₃) ₃	Ru-H	1942 cm ⁻¹
	H-H	obscured

 1 H NMR spectroscopy is better. Due to fluxionality it is NOT possible to see separate signals for H_{2} and hydride ligands

Use the T_1 (relaxation time) criterion.

For hydrogen nuclei, relaxation is solely by dipole-dipole interactions with other H atoms

$$T_{1} \propto r^{6}$$
 (r is average H-H distance)

This is shorter for H_2 ligands $H-H \sim 1.0 \mbox{\normalfon}$ than for cis - dihydrides where $H-H \geq 1.6 \mbox{\normalfon}$

EXAMPLE for MH₄(PPh₃)₃ complexes (M=Fe, Ru, Os)

	Fe	Ru	Os	
T_1 (ms)	24	38	820	

Conclusion: Osmium compound contains *classical* hydrides, other two contain dihydrogen ligands.

Level-3 Organometallics L8a Metal-metal bonded cage compounds

References: S/A pp 302-307 & 572-579

H/S pp 592-601 E/S Ch 16

Transition metals form three main classes of metal-metal bonded compounds

- Multiple bonded dimetal complexes (Dr Murrie)
- Halide/oxide clusters
- Carbonyl clusters

Halide/oxide clusters formed by early transition metals Nb, Ta, Mo, W, Re. Have halides and/or oxides as main (often only) ligands.

Examples of earliest known cluster compounds FXAMPLES

"ReCl3" is really Re3Cl9

"NbCl₂" really contains $[Nb_6Cl_{12}]^{2+}$ (chlorides bridge all edges)

"MoCl₂" really contains $[Mo_6Cl_8]^{4+}$ (chlorides bridge all faces)

Level-3 Organometallics L8b Metal-metal bonded cage compounds

Carbonyl clusters

Many thousands of examples known. Contain metal atoms in *low* oxidation states (zero or below). Ligands are invariably π -acceptor ligands CO, PR_3 , NO C_5H_5 etc.

Compounds are either neutral molecules or anionic. Virtually NO examples of cationic clusters

Number of metal atoms range from two upwards

 $[Ni_{38}Pt_6(CO)_{44}H_n]^{4-}$ (CO ligands not shown)

This "cherry cluster" models a small metal particle with chemisorbed ligands - useful in understanding mechanisms of heterogeneous catalysis

Level-3 Organometallics L8c Metal-metal bonded cage compounds

	nber of al atoms	Structure of metal framework	Cluster valence electron count	Example
1	Single metal	0	18	Ni(CO) ₄ (2)
2	Linear	0 0	34	Mn ₂ (CO) ₁₀ †
3	Closed triangle	R	48	Co ₃ (CO) ₉ CH (59
9	* *	∂ — b	109	
4	Tetrahedron	4	60	Co ₄ (CO) ₁₂ (57)
	Butterfly		62	[Fe ₄ (CO) ₁₂ C] ²⁻
	Square		64	Os ₄ (CO) ₁₆
5	Trigonal bipyramid	8	72	Os ₅ (CO) ₁₆
	Square pyramid	Å	74	Fe ₅ C(CO) ₁₅
	- 5	43	9	er Stalla
6	Octahedron	A. C.	86	Ru ₆ C(CO) ₁₇
	*			
		8	* * * *	
	Trigonal prism		90	[Rh ₆ C(CO) ₁₅] ²⁻
	<	47		**

Level-3 Organometallics L8d Electron counting rules

The "magic numbers" seen in previous overhead can be rationalised through Molecular Orbital theory in several ways

Leads to "electron counting rules" which relate the *number of* valence electrons to the skeleton structure of metals. e.g Wades rules

Compare $[B_6H_6]^{2-}$ octahedron of BH units

with $[Os_6(CO)_{18}]^{2-}$ octahedron of $Os(CO)_3$ units

Why related? : both fragments have *three* orbitals for skeletal bonding.

 $[B_6H_6]^{2-}$ has $6\times 3 + 6 + 2 = 26$ valence electrons

needs 6×2 = 12 for B-H bonds

leaves 14 electrons for B-B

bonds

7 pairs $(n+1) \equiv closo$

 $[Os_6(CO)_{18}]^{2^-}$ has $6\times 8 + 18\times 2 + 2 = 86$ valence electrons

needs 6×12 = 72 for Os-ligand bonds

leaves 14 electrons for Os-Os

bonds

7 pairs $(n+1) \equiv closo$

Transition metals have 9 orbitals - 6 NOT used for cage bonds Main group elements have 4 orbitals - 1 NOT used for cage bonds

Level-3 Organometallics L8e

Metal-metal bonded cage compounds Electron counting rules

The polyhedra which Wades rules are based on are the so-called deltahedral polyhedra - with triangulated faces

n = 4 letranearor	n = 4	Tetrahedror
-------------------	-------	-------------

n = 5 Trigonal bipyramid

n = 6 Octahedron

n = 7 Pentagonal bipyramid

•

n = 12 Icosahedron

These have the most number of nearest neighbour contacts and are the most favourable polyhedra (hence most stable).

http://mathworld.wolfram.com/Deltahedron.html

Some of these are also the *Platonic solids* (each face a regular polygon)

TETRAHEDRON

Four triangular faces, four vertices, and six edges.

CUBE

Six square faces, eight vertices, and twelve edges.

OCTAHEDRON

Eight triangular faces, six vertices, and twelve edges.

DODECAHEDRON

Twelve pentagonal faces, twenty vertices, and thirty edges.

ICOSAHEDRON

Twenty triangular faces, twelve vertices, and thirty edges.

Level-3 Organometallics L8f

Electron counting rules

Example of *nido* cluster is $Fe_5C(CO)_{15}$

 ${\it C}$ atom is encapsulated - uses *all* its valence electrons and an acts as 4 electron donor

Organic chemists - note the 5-coordinated carbon atom !!!

Fe₅C(CO)₁₅ has
$$5\times8+15\times2+4=74$$
 valence electrons needs $5\times12=60$ for Fe-ligand bonds leaves 14 electrons for Fe-Fe bonds 7 pairs $(n+2) \equiv nido$ octahedron - one vertex

Example of arachno cluster is $[Fe_4C(CO)_{12}]^{2-}$

$$Fe_4C(CO)_{12}]^{2-}$$
 has $4\times8+12\times2+6=62$ valence electrons needs $4\times12=48$ for Fe-ligand bonds leaves 14 electrons for Fe-Fe bonds 7 pairs $(n+3)\equiv arachno$ octahedron - two vertices

also known as a "butterfly" cluster