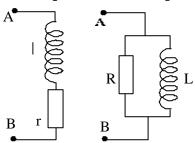
# Solutions \$\mathcal{D}\$



# 4.1 – Équivalences série parallèle



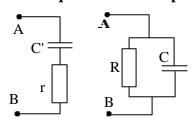
Montrer qu'en régime sinusoï dal, ces deux circuits sont équivalents.

Exprimer L en fonction de  $\ell$  et de  $Q=\ell\omega/r$  puis R en fonction de r et de Q.

Application numérique :

$$\ell = 200 \text{ mH}$$
;  $r = 10 \Omega$ ;  $\omega = 10^3 \text{ Rd/s}$ .

# 4.2 – Équivalences série parallèle



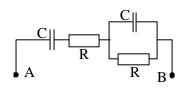
Montrer qu'en régime sinusoï dal, ces deux circuits sont équivalents.

Exprimer C' et r en fonction de C et R.

Application numérique :

$$C = 1 \mu F$$
;  $R = 10^9 \Omega$ ;  $\omega = 10^3 \text{ Rd/s}$ .

## 4.3 – Diagramme d'impédance

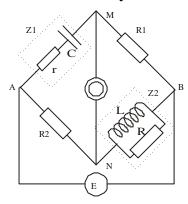


Le circuit est alimenté par une tension sinusoï dale. Calculer son impédance complexe Z = X + jY.

Donner l'allure des courbes  $X(\omega)$  et  $Y(\omega)$ .

Le vecteur  $\mathbf{OP}$  est l'image de Z. Dans le plan complexe, tracer le lieu du point P quand  $\omega$  varie.

#### 4.4 – Pont de Hay



Le pont est alimenté par une tension sinusoï dale. Établir la relation qui existe entre les valeurs  $R_1$ ,  $R_2$ ,  $Z_1$  et  $Z_2$  à l'équilibre du pont.  $Z_2$  est une inductance inconnue que l'on peut modéliser par une inductance pure L en parallèle avec une résistance pure R.

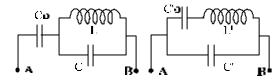
 $Z_1$  est constituée par une résistance r en série avec un condensateur de capacité C. Déterminer L et R.

$$\boldsymbol{AN}:R_1=0.5~k\Omega,\,R_2=1~k\Omega,\,r=10~\Omega,\,C=0.1~\mu F$$

#### 4.5 – Pont de Maxwell

On reprend le montage ci-contre mais cette fois Z est formée par une inductance L en série avec une résistance  $\rho$  et  $Z_2$  par un condensateur C en parallèle avec une résistance Le pont est à l'équilibre si  $R_1 = R_2 = 1$  k $\Omega$ , r = 1 M $\Omega$ , C = 1  $\mu$ F. En déduire L et  $\rho$ .

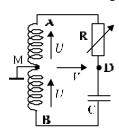
#### 4.6 – Modèles d'un quartz oscillateur



En régime sinusoï dal, déterminer l'impédance complexe des deux circuits. Déterminer les pulsations  $\omega_R$  et  $\omega_A$  pour lesquelles le module de l'impédance est nul ou infini.

Montrer l'équivalence des deux circuits en exprimant C'<sub>0</sub>, C' et L' en fonction de C<sub>0</sub>, C, et L.

## 4.7 – Circuit déphaseur passif



Le point milieu M du secondaire d'un transformateur est relié à la masse. Les tensions entre A et M d'une part et B et M d'autre part sont donc opposées. Montrer que si :  $U = E.sin(\omega t)$ , on a :

 $V = F.\sin(\omega t - \varphi)$ .

Exprimer V et  $\varphi$  en fonction de E, R, C et  $\omega$ .

Comment varie  $\phi$  quand R varie entre 0 et 50 k $\Omega$ , si C = 5 $\mu$ F et  $\omega$  = 100 $\pi$  Rd/s.

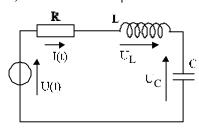
#### 4.8 - Circuit RLC série

On considère un circuit RLC série alimenté par une tension sinusoï dale  $u(t) = U.\cos\omega t$ . On recherche la valeur du courant  $i(t) = I.\cos(\omega t - \phi)$ 

1) Déterminer l'impédance complexe Z du circuit.

Poser: 
$$\omega_0^2 = \frac{1}{LC}$$
;  $Q = \frac{L\omega_0}{R}$ ;  $x = \frac{\omega}{\omega_0}$  et écrire **Z** en fonction de Q et x.

2) En déduire I et  $\varphi$ . Tracer les courbes I(x) et  $\varphi$ (x) pour Q = 0,2; 1; 5; 10.



3) Déterminer les valeurs de  $U_{\!\!L}$  et  $U_{\!\!C}$  en fonction de Q et de x.

Montrer qu'il existe une valeur  $Q_m$  de Q telle que si  $Q < Q_m$ , les tensions  $U_L$  et  $U_C$  ne présentent plus de maxima.

4) Tracer sur un même graphe les courbes  $H(x) = U_L \ / \ U$  et  $G(x) = U_C \ / \ U$ 

Solutions 🕏

Retour au menu 🕏