
Solutions \$\square\$

7.1 Circuit à diode

En utilisant les divers modèles de la diode, calculer le courant débité par le générateur.

$$E=12~V~;~R_1=6~k\Omega~;~R_2=3~k\Omega~;~R_C=1~k\Omega~;$$

Pour le modèle « avec seuil et résistance » prendre $R_D = 100\,$ O

7.2 Diodes défectueuses

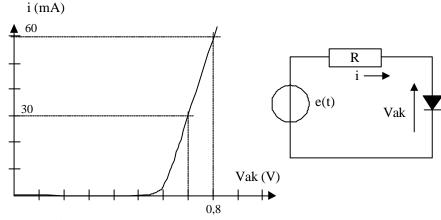
La diode du circuit ci-dessus est en court-circuit. Déterminer V_{AB} Même question si la diode est coupée.

7.3 Alimentation continue

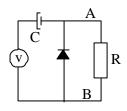
Pour réaliser une alimentation continue de 15 V, qui débite dans une résistance $R=680~\Omega$, on utilise un redresseur en pont avec un condensateur de filtrage C en parallèle sur R. On veut que la tension d'ondulation soit inférieure à 1 V.

Déterminer la tension (efficace) du secondaire du transformateur et la valeur de C.

7.4 Étude graphique d'une diode


Représenter graphiquement l'évolution de la tension V_{AK} et du courant i en fonction du temps dans les deux cas suivants :

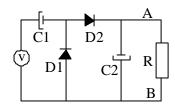
a)
$$e(t) = 1.2 + 0.2.\sin \omega t$$


$$R = 10 \Omega$$

b)
$$e(t) = 1.6 + 2.\sin \omega t$$

$$R = 100 \Omega$$

7.5 Translateur de niveau

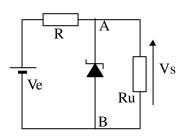


La tension d'entrée est $v = U.\sin\omega t$

On pose $T = 2\pi/\omega$ et on suppose que RC >> T.

Comment varie la tension aux bornes de la résistance R si la diode est idéale.

7.6 Doubleur de tension



La tension d'entrée est v = U.sin\ot

Expliquer le fonctionnement du circuit quand la condition $RC_2 >> T$ est satisfaite.

Montrer que la tension aux bornes de R tend alors vers la valeur 2U.

7.7 Régulateur à diode Zener

- 1) Calculer I_Z maximum.
- 2) Quel est le générateur de Thévenin ($E_{th},\,R_{th}$) équivalent entre A et B.
- 3) Déterminer le point de fonctionnement.
- 4) Calculer R et R_U sachant que:
- $-V_E = 40 \text{ V si } I_Z = I_Z \text{ max/2 et que}$:
- $-V_E = 35 \text{ V si } E_{th} = 1.2 \text{ V}_Z.$
- 5) Calculer alors I_Z si $V_E = 45$ V.
- 6) On considère que $R_Z = 25~\Omega$. Calculer alors $\delta V_S/V_S$
- 7) On fait varier R_U . Quel est le domaine de variation de cette résistance dans lequel la régulation est assurée ?

Données numériques :

$$V_E = 40 \text{ V} \pm 12,5 \%$$

$$V_Z = 24 \text{ V}$$
 $P_Z \text{ max} = 1.3 \text{ W}$

R_Z sera négligée sauf dans la question n° 6.

7.8 Régulateur à diode Zener

On reprend le schéma de l'exercice 7.7 avec $V_E=18~V,~R=100~\Omega.$

La diode est caractérisée par :

$$U_Z = 7 \text{ V si } I_Z = 100 \text{ mA}$$
 et par $U_Z = 6.2 \text{ V si } I_Z = 20 \text{ mA}$.

Sa caractéristique est linéaire pour 5 ma < $I_Z < 100$ mA.

Déterminer l'équation de la caractéristique inverse. Calculer la résistance dynamique et les valeurs de la résistance statique pour $I_Z = 30 \text{ ma}$, 60 mA et 100 mA.

Calculer U_Z pour $R_U = 100 \Omega$

Entre quelles limites peut varier R_U pour que la Zener travaille dans la partie linéaire de sa caractéristique ?

7.9 Régulateur à diode Zener

On reprend le schéma de l'exercice 7.7 avec $V_E=40~V,~V_Z=10~V,~R_Z=10~\Omega,~R=1,5~k\Omega$ et $R_{IJ}=200~\Omega.$

Calculer l'ondulation de la tension de sortie si celle de la tension d'entrée est de 4 V crête à crête.

Solutions **D**

Retour au menu 🖈