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5.  TECHNICAL DETAILS

Publications by Heading,8 Springer,9 Todd, 10 and Korn and Korn11 provide background
on many of the projective and analytical geometry concepts discussed in this section.

5.1  HOW ORTEP DRAWS ELLIPSOIDS

Fig. 3.1 illustrates various ellipsoid graphical representations that can be drawn with
ORTEP. The major components in the representations are the three principal ellipses and the
boundary (outline) ellipse. The principal ellipses have a front half and a back (hidden) half. The
entire boundary ellipse is visible.

An ellipse is approximated by connecting a series of points on the ellipse with straight
line segments. Points on an ellipse having a general orientation in three dimensions are computed;
then each of these points is projected onto the drawing board for plotting.

The basic algorithm for finding the points along a given general ellipse utilizes the prop-
erties of conjugate diameters. Assume that we have the three principal axis vectors V1, V2, V3 of
the general ellipsoid and a vector V4 from the center of the ellipsoid to the viewpoint. The vector
V5 normal to the polar plane (see Fig. 5.1), whose pole is the viewpoint, can be obtained from

V5 = A V4 , (5.1.1)

where A is the matrix for the ellipsoid that is defined by

X
T A X = d , (5.1.2)

where d is a constant.

The boundary ellipse is defined by two conjugate vectors, one of which is any vector V6
perpendicular to V5 and the second is V7, where

V7 = V5 × A V6 . (5.1.3)

The assumption made for this boundary ellipse derivation is that the view distance is large com-
pared to the ellipsoid size. Therefore, the boundary ellipse defined above always lies on the
diametral polar plane (see Fig. 5.1).

A principal ellipse that lies in the plane of the principal axis vectors Vl  and V2 will have
the third principal axis vector V3 normal to the plane of the ellipse. The intersection of this princi-
pal ellipse with the boundary ellipse is along the vector V8 where

V8 = V5 × V3 . (5.1.4)

This vector divides the front and back (hidden) sides of the principal ellipse. A vector conjugate
to V8 and in the principal plane containing V1 and V2 is V9, where

V9 = V3 × A V8 . (5.1.5)
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Fig. 5.1.  Polar planes formed by tangent cylinder and tangent cone.

After the conjugate vectors have been found, their lengths are adjusted to make them sat-
isfy Eq. 5.1.2 by letting X  = s I, where I  is a unit vector. Solving for s, we obtain

s = [d / (IT A I)]1/2 . (5.1.6)

A conjugate vector pair is expanded into an ellipse by subroutine RADIAL. Since an
ellipse is centrosymmetric, the two conjugate vectors and their negatives give four vectors whose
endpoints lie on the ellipse. By performing a vector sum of two adjacent vectors and dividing the
resultant vector components by 2 , we can obtain an additional vector. After doing this for all
adjacent pairs, we then have a total of eight vectors. This process can be repeated as many times
as desired except that the scaling constant will be different for each cycle. The constant is
described by

CONSTi  = 2 [   1   +  cos( π / 2 i ) ]   =   2  cos( π / 2 i + 1 )  , (5.1.7)

where i is the cycle number.

This total process may be thought of as taking a planar radial set of equally spaced unit
vectors and performing a deformation and scaling on the space in which it is described. In geome-
try, this deformation is called an affine transformation.
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Complete details on drawing ellipsoids can be obtained from the FORTRAN coding of
subroutines F700 and RADIAL.

5.2  ELLIPSE RESOLUTION

With printer/plotter resolution improvements, highly complex stereo drawings with each
image of the pair about 2.25 inches wide can now be produced directly without photographic
reduction. As a result, it has become necessary to adjust the resolution (smoothness) of the plotted
elliptical curves in ORTEP to take full advantage of the output devices’ capabilities.

ORTEP produces its ellipses by “stretching” an equal-area circle to the shape of the
ellipse. (Since ORTEP draws all its shapes with straight lines, the circle is, in fact, a polygon, and
the smoothness of the ellipse depends on the number of vertices, or spokes, in the polygon.)
ORTEP can produce circles having 16, 32, 64, and 128 spokes. The selection is a function of the
radius of the circle. The default radii for changing to circles with fewer spokes are 0.09375 in.
(128 → 64), 0.375 in. (64 →  32), and 0.75 in. (32 →  16). These default values are smaller than
those in OR TEP-II.2

The smoothness of ellipses can be altered with the new 304 instruction in ORTEP-III,
which allows the user to enter a smoothness factor. A factor of 1 sets the circle radii for changing
to other spoke angles to the default values given above. A factor less than 1 produces smoother
ellipses, and values greater than 1 produce ellipses with more “jaggies”. If the factor is 0, all ellip-
ses, regardless of their size, will be drawn from circles having 128 spokes.

Fig. 5.2 shows three groups of ellipses produced with smoothness factor settings of 3, 2,
and 0. Although perfectly smooth ellipses are the ideal, it may be necessary to balance their
appearance against the computational time to produce them and the sizes of the resultant files
containing the ORTEP illustration. Table 5.1 shows the sizes of the EPS and HPGL files of the
concentric ellipses in Fig. 5.2 as a function of the smoothness factor. Computational time was not
determined for these examples, but it may become a significant factor on slower computers.

Table 5.1.  Size of ORTEP illustration files as a 
function of ellipse smoothness factor settings.

Smoothness

Factor

Size of

EPS File
Size of

HPGL File

0. 35544 28558

0.5 29400 23566

1. 21464 17118

2. 11992 9422

3. 8408 6510

5. 7640 5886

10. 5848 4430
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Fig. 5.2. Three sets of concentric ellipses produced by ORTEP with
smoothness factor settings of 3, 2, and 0, respectively, starting from the top.

5.3  HOW ORTEP DRAWS BONDS

The major difficulty when drawing bonds is obtaining the intersection where the bond
penetrates the ellipsoid. Three quadrics are used in subroutine BOND to calculate bond intersec-
tion. These three are the ellipsoid, the tangent cylinder, and the tangent cone.

The ellipsoid is described in matrix notation as

X
T
A X  = d , (5.3.1)

where d  is a constant and X  is any vector from the center to the surface of the ellipsoid. The
matrix A  is 3 × 3 symmetrical with components aij ( i,j = 1, 2, 3).
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The elliptic cylinder tangent to the ellipsoid and with its axis along z is described by

X
T
B X = d , (5.3.2)

where

B   =   
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(5.3.3)

and d is the constant used in Eq. 5.3.1. The tangent cylinder is used when it is necessary to termi-
nate the bond at the boundary of the ellipsoid when a parallel projection is used.

To find the intersection of a cylindrical bond along Vb with radius r with either the ellip-
soid or the tangent cylinder, we proceed as follows:

l. Form a radial set of vectors Vrj of length r normal to Vb.

2. Take a unit vector I  parallel to Vb and let

Xj = Vrj + s I , (5.3.4)

where s is a constant to be determined. Substituting in Eq. 5.3.1, we obtain

s2 IT
A I + 2sVr

T
A I + Vr

T
A Vr – d = 0 ; (5.3.5)

and solving for s , we get

s   =   − V r T  A I   +   ( V r T  A I) 2   −   ( I T  A I) ( V r T  A Vr   −   d ) 
I T  A I

 . (5.3.6)

The elliptic cone that is tangent to the ellipsoid and has its apex on the viewpoint can be
obtained from the matrix A and the vector Vu, which extends from the center of the ellipsoid to
the viewpoint. This is performed in the following steps:

1. The ellipsoid is transformed with a rotation matrix to a new Cartesian frame of 
reference that has the z  axis along the view vector Vu.

2. The tangent cone can now be described as

Y
T
C Y  = 0 , (5.3.7)

where Y is a vector originating from the vertex (viewpoint) of the cone and
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  ,   K   =   d / ( V u 
T  Vu )  . (5.3.8)

3. The frame of reference is rotated back to its original orientation with a rotation 
matrix that is the inverse of the one used in step 1. Note that the origin is now
on the viewpoint rather than on the ellipsoid center.

To find the length, s , of a vector sI  extending from any point p inside the cone to the sur-
face of the cone, we let

Y = Vp + sI (5.3.9)

and obtain from Eq. 5.3.7

(Vp + sI)T C (Vp + sI) = 0 ; (5.3.10)

then solving for s, we obtain

s   =   − V p T C I   +   ( V p T C I ) 2   − ( I T C I ) ( V p T C V p ) 
I T C I 

(5.3.11)

The vector Vp from the vertex to p is formed by

Vp = -Vu + Vr , (5.3.12)

where Vr is any member of a radial set such as that described for the regular ellipsoid intersection.

5.4  OPTIMAL PARAMETERS FOR STEREOSCOPIC DRAWINGS

For optimal viewing of stereoscopic drawings, the origins of the two views should be
separated by 2.2-2.4 in. and the stereo rotation between the two should be 5°-6°.

Fig. 5.3 was created when it was common practice to produce “large” ORTEP drawings
that would be photographically reduced to give the optimal origin separation.1,2 The reduced
drawings would then typically be viewed with a stereoscope. Under these circumstances, Fig. 5.3
provides a picture of the relationship among the various parameters that must be taken into con-
sideration when producing the drawing.12,13
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Fig. 5.3.  Geometrical relations among the stereoscopic perspective projec-
tion parameters for a typical ORTEP drawing.  

In Fig. 5.3, the available plotting area for each projection is assumed to be 14 in. horizon-
tally and at least 11 in. vertically. The scaled mathematical object is within a box 12 in. wide, 9
in. (or more) high, and 6 in. deep with the plane of the plotter halfway back into the box. The ste-
reoscopic image seen through a stereoscope with a 4.7-in. focal length and a 2.56-in. separation
between optical centers should appear superimposed on the original object. The parameters for
both “translation stereo” and “rotation stereo” are shown. The appropriate linear dimensions can
be scaled to accommodate other plotting areas and still produce the same final stereoscopic
image. 
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With the advent of high resolution printers/plotters, the need to reduce large drawings has
diminished, and high quality drawings with the optimal origin separation can be produced
directly. For those who view such drawings without the aid of a stereoscope, the viewing distance
set in ORTEP should be the actual physical distance that will be used to view the pair. If a stereo-
scope is used for viewing, the viewing distance set in ORTEP is a function of the device’s focal
length and the location of the drawing’s origin.

The cubane example in Section 2.4 can be used as a tool for determining the optimal
view distance parameter. When the stereo cubane drawing is observed under usual viewing condi-
tions, users should compare the front and back faces to decide if the molecule actually looks like
a cube. If the faces appear out of proportion with each other, adjust the view distance parameter
until the cube looks correct.

Theoretically, the best stereoscopic fidelity is obtained by translation of the origin
rather than by stereo rotation of the object; however, the comparison of results given in Fig. 5.4
shows that the differences are indeed minor and nearly impossible to detect.

A

B

C

Fig. 5.4. Stereoscopic drawings of a hexagonal lattice with different stereo-
scopic parameters. (A) Stereo rotation of 4.9˚, (B) stereo translation of 2.56 in.,
and (C) stereo rotation of 6.0˚.

The top and middle drawings of Fig. 5.4 utilize the parameters derived in Fig. 5.3 and
demonstrate that the differences predicted13 for translation and rotation stereo are not discernible
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in practice. The bottom stereo drawing illustrates the slight exaggeration in depth that occurs
when a larger stereo rotation angle is used.

Fig. 5.4A was produced with the following stereo-rotation instructions for the left and
right eye views,

503        2     2.45

503        2    -2.45

and stereo translation instructions were used for Fig. 5.4B.

504    -1.28        0        0

504     2.56        0        0

 Remember that the 504 instruction (see 3.3.6.4) changes the origin of the reference  Car-
tesian system while the 503 instruction (see 3.3.6.3) rotates the working Cartesian system. If addi-
tional drawings are to be made following a stereo translation, the reference system origin should
be returned to its original position in order to prevent confusion.

504    -1.28        0        0

Also keep in mind that the 504 instruction (see 3.3.6.4) should not be used when the ellip-
soids have internal structure because the octants selected for shading may not be the same in both
views.
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