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6. MATHEMATICSOF THERMAL-MOTION PROBABILITY ELLIPSOIDS

It is convenient to develop the physical significance of the anisotropic temperature factor
with the notation and terminology of probability theory rather than with the more familiar Fourier
transform theory. The results are, of course, identical regardless of the terminology used. The rea-
son for this choice is that the literature of mathematical statlstlcs and probabl li |ty theory is some-
what neater and easer to follow. The texts by Wilks,** Cramer Mlller Hamilton,” and
Lukacs and Laha®® and the handbooks by Burington and May* % and Owen? are found to be par-
ticularly useful.

6.1 PROBABILITY DENSITY FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

Given three chance variables X1, X5, X3 and S, which isaregion in X;, X5, X3 space, the
probability P(S) that the paint (X;, X5, X3) fallsintheregion Sisgiven by

PO =/ [ [@(X, X, X) dX dX dX, . (6.1.1)
S
If theintegration is carried over al space, then
I Jox, X, X) dX dX, dX, = 1. (6.1.2)

The function @(Xy, X5, X3) is called the probability density function (pdf) for the joint
distribution of X4, X5, X3. Using vector notation, we can designate the pdf as ¢(X).

When the distribution is the type said to be normal or Gaussian, the pdf is

[da(M—l)]UZ

X) =
q( ) (21-[)3/2

exp[—2 (X = X' M (X = X)] . (6.1.3)

The matrix M™ is the inverse of the symmetrical dispersion (variance-covariance) matrix M,
where

2
o o 102p12 0103p13

1

— 2
M = 0102p12 0-2 0203p23 :

2
O-10-3pl3 o 203p23 o 3

The symbols of represent the second moments or variance about the mean position X . The sym-
bols g0;p;; are the corresponding covariances and pj; are the correlation coefficients.
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6.2 EQUIPROBABILITY ELLIPSOIDS

For a proper normal distribution, the quadratic form (X — X)" M™(X — X) is positive def-
inite, and a principal axis transformation (see 6.4) is possible that will make the cross correlation
coefficientsp;; =0 (i #j). The result of the transformation is the pdf

1 _Q/2
VoY) = e? 6.2.1
YY) = g o 621
1 2 3
where

—9)2 -¥)? -v)?

Q — (ylo-2 y]_) + (y20_2 yZ) + (y302 y3) . (622)
y Y Y

1 2 3

The y; are coordinates based on the Cartesian principal axis system and g2 are the variances
along the principal axes, i =1, 2, 3. Y

The normal probability density function is constant for points on the ellipsoid Q = c?
where C is a constant. The probability that a random point (yy, Y2, y3) in the distribution will fall
inside the elipsoid is

P(C) = (2/m)"'? j r2e’’/2dr . (6.2.3)

Thisresult isderived from Egs. 6.1.1, 6.2.1, and 6.2.2 by transforming to spherical coordinates.
When C = 1.5382, P = 0.5 and the corresponding ellipsoid is called the 50% probability
ellipsoid Table 6.1 is atable of P versus C values that were calculated by integrating Eq. 6.2.3

using Gaussian quadrature. Quadruple preC|S|on calculations were required to match the values
found on page 203 of Owen’s handbook.

6.3 CHARACTERISTIC FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

The characteristic function ®(T) corresponding to a trivariate distribution @(X) is the
expected value of € 7%, namely,

O(T) = [ e(X)e™ dX . (6.3.1)

—o0

For the trivariate normal pdf, Eq. 6.1.3, the corresponding characteristic function is

O(T) =exp [iIT'X - T™™MT], (6.3.2)

where M is the variance-covariance dispersion matrix described in Section 6.1 and X is the center
of mass of the distribution.
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Table6.1. Critical valuesfor probability ellipsoids of atrivariate normal distribution.

P C P C P C
0.01 0.3389 041 1.3842 0.81 21824
0.02 0.4299 0.42 14013 0.82 22114
0.03 0.4951 043 14183 0.83 2.2416
0.04 0.5479 0.44 14354 0.84 2.2730
0.05 0.5932 0.45 14524 0.85 2.3059
0.06 0.6334 0.46 1.4695 0.86 2.3404
0.07 0.6699 047 1.4866 0.87 2.3767
0.08 0.7035 048 1.5037 0.88 24153
0.09 0.7349 0.49 1.5209 0.89 2.4563
0.10 0.7644 0.50 1.5382 0.90 2.5003
011 0.7924 0.51 1.5555 0.91 25478
012 0.8192 052 15729 092 2.5997
013 0.8447 053 1.5904 093 26571
0.14 0.8694 054 1.6080 094 27216
015 0.8932 0.55 1.6257 0.95 2.7955
0.16 0.9162 0.56 1.6436 0.96 2.8829
0.17 0.9386 0.57 1.6616 097 29912
0.18 0.9605 0.58 1.6797 0.98 3.1365
0.19 0.9818 0.59 1.6980 0.99 3.3682
0.20 1.0026 0.60 1.7164 0.991 3.4019
0.21 1.0230 0.61 1.7351 0.992 3.4390
0.22 1.0430 0.62 1.7540 0.993 3.4806
0.23 1.0627 0.63 1.7730 0.994 3.5280
0.24 1.0821 0.64 1.7924 0.995 3.5830
0.25 11012 0.65 1.8119 0.996 3.6492
0.26 1.1200 0.66 1.8318 0.997 3.7325
0.27 1.1386 0.67 1.8519 0.998 3.8465
0.28 1.1570 0.68 1.8724 0.999 4.0331
0.29 11751 0.69 1.8932 0.9991 4.0607
0.30 1.1932 0.70 1.9144 0.9992 4.0912
031 1.2110 0.71 1.9360 0.9993 4.1256
0.32 1.2288 0.72 1.9580 0.9994 4.1648
0.33 1.2464 0.73 1.9804 0.9995 4.2107
034 1.2638 0.74 2.0034 0.9996 4.2661
0.35 1.2812 0.75 2.0269 0.9997 4.3365
0.36 1.2985 0.76 2.0510 0.9998 4.4335
0.37 1.3158 0.77 2.0757 0.9999 4.5943
0.38 1.3330 0.78 21012 0.99999 5.0894
0.39 1.3501 0.79 21274 0.999999 5.5376
0.40 1.3672 0.80 21544 0.9999999 5.9503
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The crystallographic structure factor equation that incorporates general anisotropic tem-
perature factor coefficientsis

F(h) = ¥ f (h) exp(2mih"™X ) exp(-h'B h) , (6.3.3)

where

h isavector giving the Miller indices,

Xn isavector giving the fractional unit cell coordinates of the nth atom,
B, istheanisotropic temperature factor coefficient matrix, and

fy(h) isthe atom form factor value for atom n.

If achange of variables T = 2mh is made, then Eq. 6.3.3 can be rewritten as

~ B
F(T) = Y f(T) exp|iT™X - %TTﬁT : (6.3.4)

The scaled anisotropic temperature factor matrix (1/21'3)8 is seen to be identical with the vari-
ance-covariance dispersion matrix M in Eg. 6.3.2.

The corresponding crystal space trivariate normal pdf for any particular atomn is

[272 det (B1)]*'>

®X) = 0 exp[ - TE(X=X)" B{(X-X)] ; (6.3.5)
orif Mt =218, then
®(X) = % expl — (X=X)" M (X -K)] , (6.3.6)

which isidentical to Eg. 6.1.3.

6.4 PRINCIPAL AXISTRANSFORMATION

The transformation of anlsotroplc temperature factor coeffl cients (for the general triclinic
case) to pri nC| pal axes of thermal motion is discussed by Waser,?! Busi ng and Levy, and Cruick-
shank et al.?

The principal axis transformation is necessary to find the thermal motion probability ellip-
soids discussed in Section 6.2. The principal axes of the matrix M™in Eq. 6.3.6 are the vectors yy,

yo, y3 for which the inner vector product (y;, y;i) has a stationary value subject to the constraint
(vi, My)=1, i=123. (6.4.1)

For the general triclinic crystal system, this means that the quadratic form yTG'ly has a stationary
value subjected to the constraint
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y'cimty =1 (6.4.2

where G isthe metric tensor with components & - & ,where g, - g isthe scaar vector product of
two of the three unit cell vectors. Introducing the Lagrange multiplier /A leads to

1

lG‘l - TM-llyi =0 (i=1,2,3); (6.4.3)
premultiplying by M yields
[MG‘l— Tll ]yi =0 (=123). (6.4.4)

Or we can do some additional rearranging and obtain
[GM= Allyi=0 (i=1,23). (6.4.5)

Eq. 6.4.4 is equivalent to one of the results derived by Busing and Levy,?? except the \; obtained
here are the reciprocals of their A; because we are doing the principal axis transformation on Vi
while their formulation performs the transformation on M. The numerical procedure used in
ORTEP finds the eigenvalues and eigenvectors of the unsymmetrical matrix MG in Eq. 6.4.4.






