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6.  MATHEMATICS OF THERMAL-MOTION PROBABILITY ELLIPSOIDS

It is convenient to develop the physical significance of the anisotropic temperature factor
with the notation and terminology of probability theory rather than with the more familiar Fourier
transform theory. The results are, of course, identical regardless of the terminology used. The rea-
son for this choice is that the literature of mathematical statistics and probability theory is some-
what neater and easier to follow. The texts by Wilks,14 Cramer,15 Miller,16 Hamilton,17 and
Lukacs and Laha18 and the handbooks by Burington and May19 and Owen20 are found to be par-
ticularly useful.

6.1
   

PROBABILITY DENSITY FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

Given three chance variables X1, X2, X3 and S, which is a region in X1, X2, X3 space, the
probability P(S) that the point (X1, X2, X3) falls in the region S  is given by
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If the integration is carried over all space, then
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The function φ(X1, X2, X3) is called the probability density function (pdf) for the joint
distribution of X1, X2, X3. Using vector notation, we can designate the pdf as φ(X).

When the distribution is the type said to be normal or Gaussian, the pdf is

φ ( X )   =   [ det( M − 1 ) ] 1 /  2 

( 2 π ) 3 /  2 
 exp[ − 1 

2 
( X   −   X  ̂) T   M − 1 ( X   −   X  ̂) ]  . (6.1.3)

The matrix M
-1  is the inverse of the symmetrical dispersion (variance-covariance) matrix M ,
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The symbols σ2

i
 represent the second moments or variance about the mean position X ˆ . The sym-

bols σiσjρij are the corresponding covariances and ρ  ij are the correlation coefficients.
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6.2  EQUIPROBABILITY ELLIPSOIDS

For a proper normal distribution, the quadratic form ( X   −   X ˆ ) T   M − 1 ( X   −   X ˆ )  is positive def-
inite, and a principal axis transformation (see 6.4) is possible that will make the cross correlation
coefficients ρij  = 0 ( i ≠ j). The result of the transformation is the pdf
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The yi are coordinates based on the Cartesian principal axis system and σ 2 

y 
i 

 are the variances
along the principal axes, i = 1, 2, 3.

The normal probability density function is constant for points on the ellipsoid Q  = C2

where C is a constant. The probability that a random point (y1, y2, y3) in the distribution will fall
inside the ellipsoid is

P ( C )   =   ( 2 / π ) 1 / 2   
C 

I 

0 
r 2  e− r 2 / 2   dr  . (6.2.3)

This result is derived from Eqs. 6.1.1, 6.2.1, and 6.2.2 by transforming to spherical coordinates.

When C = 1.5382, P  = 0.5 and the corresponding ellipsoid is called the 50% probability
ellipsoid. Table 6.1 is a table of P  versus C  values that were calculated by integrating Eq. 6.2.3
using Gaussian quadrature. Quadruple precision calculations were required to match the values
found on page 203 of Owen’s handbook.20 

6.3 CHARACTERISTIC FUNCTION OF A TRIVARIATE NORMAL DISTRIBUTION

The characteristic function Φ(T) corresponding to a trivariate distribution φ(X) is the
expected value of e i T T X , namely,

Φ ( T )   =   
4 

I 

− 4 
φ ( X ) e i T T X   d X  . (6.3.1)

For the trivariate normal pdf, Eq. 6.1.3, the corresponding characteristic function is

Φ ( T )   =  exp [   i T  T X ˆ   −   1 

2 
T T MT  ]  , (6.3.2)

where M is the variance-covariance dispersion matrix described in Section 6.1 and X ˆ  is the center
of mass of the distribution.
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Table 6.1.  Critical values for probability ellipsoids of a trivariate normal distribution.

P C P C P C

0.01 0.3389 0.41 1.3842 0.81 2.1824
0.02 0.4299 0.42 1.4013 0.82 2.2114
0.03 0.4951 0.43 1.4183 0.83 2.2416
0.04 0.5479 0.44 1.4354 0.84 2.2730
0.05 0.5932 0.45 1.4524 0.85 2.3059

0.06 0.6334 0.46 1.4695 0.86 2.3404
0.07 0.6699 0.47 1.4866 0.87 2.3767
0.08 0.7035 0.48 1.5037 0.88 2.4153
0.09 0.7349 0.49 1.5209 0.89 2.4563
0.10 0.7644 0.50 1.5382 0.90 2.5003

0.11 0.7924 0.51 1.5555 0.91 2.5478
0.12 0.8192 0.52 1.5729 0.92 2.5997
0.13 0.8447 0.53 1.5904 0.93 2.6571
0.14 0.8694 0.54 1.6080 0.94 2.7216
0.15 0.8932 0.55 1.6257 0.95 2.7955

0.16 0.9162 0.56 1.6436 0.96 2.8829
0.17 0.9386 0.57 1.6616 0.97 2.9912
0.18 0.9605 0.58 1.6797 0.98 3.1365
0.19 0.9818 0.59 1.6980 0.99 3.3682
0.20 1.0026 0.60 1.7164 0.991 3.4019

0.21 1.0230 0.61 1.7351 0.992 3.4390
0.22 1.0430 0.62 1.7540 0.993 3.4806
0.23 1.0627 0.63 1.7730 0.994 3.5280
0.24 1.0821 0.64 1.7924 0.995 3.5830
0.25 1.1012 0.65 1.8119 0.996 3.6492

0.26 1.1200 0.66 1.8318 0.997 3.7325
0.27 1.1386 0.67 1.8519 0.998 3.8465
0.28 1.1570 0.68 1.8724 0.999 4.0331
0.29 1.1751 0.69 1.8932 0.9991 4.0607
0.30 1.1932 0.70 1.9144 0.9992 4.0912

0.31 1.2110 0.71 1.9360 0.9993 4.1256
0.32 1.2288 0.72 1.9580 0.9994 4.1648
0.33 1.2464 0.73 1.9804 0.9995 4.2107
0.34 1.2638 0.74 2.0034 0.9996 4.2661
0.35 1.2812 0.75 2.0269 0.9997 4.3365

0.36 1.2985 0.76 2.0510 0.9998 4.4335
0.37 1.3158 0.77 2.0757 0.9999 4.5943
0.38 1.3330 0.78 2.1012 0.99999 5.0894
0.39 1.3501 0.79 2.1274 0.999999 5.5376
0.40 1.3672 0.80 2.1544 0.9999999 5.9503
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The crystallographic structure factor equation that incorporates general anisotropic tem-
perature factor coefficients is

F ( h )   =   3 
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n 
( h )  exp( 2 π i h T X ˆ 

n 
)  exp( − h T B 

n 
h )  , (6.3.3)

where

h is a vector giving the Miller indices,
Xn is a vector giving the fractional unit cell coordinates of the nth atom,
Bn is the anisotropic temperature factor coefficient matrix, and
fn(h) is the atom form factor value for atom n .

If a change of variables T = 2πh is made, then Eq. 6.3.3 can be rewritten as
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The scaled anisotropic temperature factor matrix (1/2π2)B is seen to be identical with the vari-
ance-covariance dispersion matrix M in Eq. 6.3.2.

The corresponding crystal space trivariate normal pdf for any particular atom n  is

φ ( X )   =   [ 2 π 2  det ( B − 1 ) ] 1 / 2 

( 2 π ) 3 / 2 
 exp[ − π 2 ( X − X ˆ ) T   B − 1 ( X − X ˆ ) ]  ; (6.3.5)

or if M-1 = 2π2
B

-1, then

φ ( X )   =   det ( M − 1 ) 
( 2 π ) 3 / 2 

 exp[ − 1 

2 
( X − X ˆ ) T   M − 1 ( X − X ˆ ) ]  , (6.3.6)

which is identical to Eq. 6.1.3.

6.4  PRINCIPAL AXIS TRANSFORMATION

The transformation of anisotropic temperature factor coefficients (for the general triclinic
case) to principal axes of thermal motion is discussed by Waser,21 Busing and Levy,22 and Cruick-
shank et al.23

The principal axis transformation is necessary to find the thermal-motion probability ellip-
soids discussed in Section 6.2. The principal axes of the matrix M-1  in Eq. 6.3.6 are the vectors y1,
y2, y3 for which the inner vector product (yi, yi) has a stationary value subject to the constraint

(yi, M
-1

yi) = 1,      i = 1, 2, 3 . (6.4.1)

For the general triclinic crystal system, this means that the quadratic form yT
G

-1
y has a stationary

value subjected to the constraint
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y
T
G

-1
M

-1
y = 1 (6.4.2)

where G-1  is the metric tensor with components ai · aj , where ai  · aj is the scalar vector product of
two of the three unit cell vectors. Introducing the Lagrange multiplier 1/λ leads to

G − 1   −   1 
λ 

i 

M − 1 y 
i 
  =   0      (i = 1, 2, 3) ; (6.4.3)

premultiplying by M yields

MG− 1   −   1 
λ 

i 

I y 
i 
  =   0      (i = 1, 2, 3) . (6.4.4)

Or we can do some additional rearranging and obtain

[ GM
–1 –  λiI ]yi = 0     ( i = 1, 2, 3) . (6.4.5)

Eq. 6.4.4 is equivalent to one of the results derived by Busing and Levy,22 except the λi obtained
here are the reciprocals of their λi because we are doing the principal axis transformation on M-1

while their formulation performs the transformation on M. The numerical procedure used in
ORTEP finds the eigenvalues and eigenvectors of the unsymmetrical matrix MG

-1 in Eq. 6.4.4.
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