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It is shown that to find Clebsch-Gordan coefficients of space groups (both single and double), the
representations of the groups of k alone are required. This is another example demonstrating the well-
accepted fact that in applications of space groups it is sufficient to know the representations of the
groups of k. Final formulas are derived that enable the calculation of the Clebsch-Gordan coefficients
from the representations of the groups of k. As an example the spin-orbit coupling in solids is considered.

I. INTRODUCTION

In applications of group theory in physics the
problem very often arises of decomposing a direct
product of two irreducible representations into a sum
of irreducible parts. A classical example is the addition
of angular momentum in quantum mechanics. In the
theory of solid-state physics such a decomposition is
required in defining selection rules in scattering
processes in crystals.! Sometimes more detailed
information is needed, as when one has to express a
product of two wavefunctions p®y!®, which are
specified according to irreducible representations of
some symmetry group, « being the index of the
representation and 7 of the row, by means of functions
y{” that undergo transformations according to
irreducible representations of the same group. The
elements of the matrix that gives the connection
between W @p{# and p{" are called the Clebsch—
Gordan coefficients. These coefficients are of general
interest for each specificsymmetry group. For example,
they are of very great use for the three-dimensional
rotation group and different kinds of SU groups.

In solids the symmetry groups are space groups,
and this paper deals with the question of finding the
Clebsch-Gordan coefficients for them. The method
used is one developed by Koster? for finite groups.
It is shown that the finding of Clebsch-Gordan
coefficients for space groups can be reduced to formulas
containing only the representations of groups of the
vector k. A similar result was obtained before, for
the decomposition of direct products of representa-
tions of space groups when one is interested in
selection rules in crystals.®

As an example, it is shown how the Clebsch—
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Gordan coefficients are obtained for the spin-orbit
coupling in solids.

II. GENERAL FORMALISM

Any space group G can be decomposed for a
specific k, a vector in the first Brillouin zone, into ¢
left cosets

G=(°‘ole)=K)+ (ailAl)'K’+“°
Rl | A DK,

where (% | Ag) = (¢ | 0) is the unit element and X,
the little group of the vector k, is the set of elements
{(8 | B)} with the property that fk = kor fk = k + K
where K is a lattice vector of k space. We will denote
these two relations by fk = k. The set of elements
{(o; | A,)}, the representing elements, has the property
that o,k = k;, where k; % k. The ¢ vectors k,, i.e.,
ko =k, Kk, -, k., form the star of the vector k
denoted by S;.
The elements of G can be written as

@A) = (| v(® + a) = (| a)(x | v()),

where a is a primitive translation and v(«) is either
Zero or a nonprimitive translation associated with the
operator . We note that v(e) = 0.

An irreducible representation of the space group G
is characterized by the vector k and its star, and the
irreducible representation of the group of the vector
k. We denote an irreducible representation of the
space group G by D7., where k* denotes the specific
vector k in the Brillouin zone and its star, and r
denotes the irreducible representation of the group
of the vector k. The irreducible representation Dj.
is a n = dg dimensional irreducible representation,
g is the number of vectors in the star of k, and d
the dimension of the rth irreducible representation of
the little group of the vector k.

We take the irreducible representation of G in the
standard form, i.e., the representation of the elements
of the invariant subgroup of translations is of the
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following form?*:

e—ik-a '
-—ikl'aI

D;t[el a] =
e—ikq_yal

The unit matrix 7 is of dimension d. For a general
element D7.(G) is divided into blocks of dimension d.
There will be ¢ rows and columns of blocks. We say
then that D;.(G) has n = dg rows (columns) and ¢
block rows (block columns).

The futh block of Di.(G), denoted by Di.,,(G),
is nonzero, when for all a

eiak‘pa — ezagk-av

We have for this nonzero block of dimension 4:

D;'Gu[a I v(oc) + a] = D;[ﬁo,‘ | v(ﬂf)u) + bﬂu]’ (1)
where Di[By, | v(B,,) + by,] is the d-dimensional
irreducible representation of the little group of the
vector k and (B, | v(Bs,) + by,) is found from the
relation
(| w(@) + a)(x, | v(x,) + a,)

= (xg | v(ag) + ao)(ﬂau I V(ﬂoy) + bau)- @

Hence (o, | v(x,) + a,) and (% | v(a) + a,) are the
representing elements, such that «k =k, and
agk = Ky; we assume that a, = a, = 0.
Defining the nonprimitive translation associated
with 8, as
v(B,,) = a3 (ev(a,) + v(d) — v(d,),

we derive from Eq. (2) that
3

4)
Rewriting Eq. (1) and using Eq. (4), we have for the
nonzero blocks of Dj.

Die olee | v(@) + a] = DlBoy | ¥(Boy) + 25al
= e~ D][B4, | v(Bs),  (5)
where 8y, and v(f,,) are given by Eqs. (3) and (4),
respectively.

If the direct product of two irreducible representa-
tions of the space group G is reducible, we have

o, = %gf,
and

—1
bg“ = oy a.

T roo_ ry”
Die X Do =3 ¢ppDime,
mn

4 G. F. Koster, Space Groups and their Representations (Academic
Press Inc., New York, 1957).

COEFFICIENTS FOR SPACE CROUPS
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where ¢,,, is the number of times the irreducible
representation appears in the reduced form.
We calculate c,,, from

1 » o
Cnn = = 2 XIH(G) X (G) X (),
gh'a

where X3;.(G) is the character of DL.(G), and gh is
the order of the space group G; £ is the order of the
invariant subgroup of translations T, and g the order
of the factor group G/T.

The direct product is put into reduced form by a
similarity transformation using a unitary matrix U:

~irpr, a7 — (reduced form of the)
UTDp» X DU = ( direct product

We assume that the irreducible representation Dji.,,
a n” = ¢"d” dimensional representation, appears ¢
times in the reduced form. (In general the dimension
of Din., is denoted as ), = ¢/, d, and its multiplicity
in the reduced form as c,,,; when referring to Djr..,
for typographical reasons only, we will drop the
indexes m and n from the dimensionality and multi-
plicity.) If these are the first irreducible representations
in the reduced form, i.e., the first irreducible rep-
resentations along the diagonal of the reduced form,
then the first cg"d” columns of U are calculated from

the equation?

"g—flg [D(G) X Dyr(G)],ual DO
= UpeUnp + Uniararein Untararssn
+ Um(2d”q"+i”) U:(2d"¢1"+7”’)
(6)
This gives the elements of the first ¢g"d” columns of
U in terms of the known quantities
a'q
gh
We also know that

+ Um([c—-l]d"a"+i") Un([c—l]d”q"+j") '

g [D3#(G) X Dys(G)]nal Ditee(@ie -

[Di(G) X Dir(G)]my = Dix(G)y; Di*(G)s s

where m and n are used as an abbreviation for the
double indices (i,i") and (j,j'), respectively. The
possible values of the indices are as follows:

mn=1,2,---,qdq'd,
i,j= 1,2,‘ o ’qd,

i,’j’ = ls 2: tte ’q'd,9

i”,j” = 1’2, « e ’q”d”.

qd is the dimension of the irreducible representation
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Di., q'd’ of Di., q'd" of Dit,, and gdg'd’ of the
direct product Dj. X D..

Let us introduce a new indexation which will show
clearly the division of the irreducible representations
into blocks. Di. is a gd-dimensional irreducible
representation which is divided into ¢ X g blocks of
dimension d % d. Let 6 be the index of the block rows,
and u be the index of the block columns. A specific
block of Di. is denoted by (8, u), the intersection of
the 6th block row and the uth block column.

The ith row of DJ. can be denoted as the nth row
of the 6th block row, and the jth column denoted as
the wth column of the uth block column, that is,

l=0d+7]; 6’M=0a13°”’q'—1’

j=‘ud+779 "7a’"'=1,2,"',d- (7)

Using this indexation, the (i, f)th element of D, is
denoted as the (6d + #n)(ud + m)th element. 1t is the
(nm)th element of the (Bu)th block of Di.. The rows
and columns of Dy. and Dﬁ:- are denoted in a
similar manner.

Recalling that G = {(« | v(«) + a)} and using Eqs.
(1) and (5), we can write

D;‘(G)(Odﬂl) (pd+7)

= ¢ ke -Drfﬂou l V(ﬂau)]é(aa 0(3/39,‘)- ®)

The (6pw)th block of D7.(G) is nonzero only if «
fulfills the condition written in the delta function.
Two similar expressions can be written for elements
of the irreducible representations Dy, and DJi,.

Using the new indexation, and writing the sum on
the elements of the space group G as

[2] (e|a) {alw(a))
we then rewrite Eq. (6) in the following form:

"o
1 e_i(kﬁ‘k'o'—kluﬂ”)" d q

h Di[Bou | Y(Bo)lye
b (€fa) ¢ (aM " k[ﬁoul (Bo)],

X DLlBay | VBVl DitelBive | VB e
X O(aar, — ogBs,)
X ooy, — ogefg )0y, — otg B,
= U(0d+n:0’d'+n’)(0”d"+n”)U(ud+r;u’d'+1r')(u"d”+1r”)
+ 4+ U(Od+n;0’d’+n’)([c—~1]d”q”+0”d”+n")
€))

The basis functions of the irreducible representation
Dy, are ke, and transform under elements of the
space group as follows:

(« IA)'P:" = E Die[a , A](ud+1r)(3d+ﬂ)'/’:9'

7

*
X U(Mz e W o100 " d" o) -

(16)
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The functions 9k, 6 = 0, form the basis functions of
the irreducible representation Dj of the little group
J. The functions w"o are related to the functions 1/)"

by the following relationt:

"P];o = (o I "’(“o))‘/’:, (11)

where (Ifla V(o)) are the representing elements of the
group G. Similar relations hold for the basis functlons
w“ o’ and :p"; 6" of the irreducible representations Dy,
and Dr.., respectxvely

The bas1s functions of the direct product are y}o
¥y . The elements of U give the coefficients of the
linear combinations of these functions, which form
the basis functions of the ¢ irreducible representatlons
D;Y., appearing in the reduced form, that is,

klo

L% (12)

= ; Ulasme ar+mraara+oarn P05 e

’

kL

where [ =0,1,- -, ¢~ 1.

The columns of U calculated in Eq. (9) can be
shown to be divided into blocks. The cg”d” columns
are divided into sections, and each section divided
into g¢" x ¢” blocks of dimension dd’ x d”. A specific
block is denoted by (66")(lg" + 6”), the (66')(6")th
block of the /th section.

Equation (9) facilitates the calculation of the set of
¢ blocks (00')(lg" + 6", I=0,1,---,c~1, for
each trio of values of 8, 6’, and 6”. Once we have chosen
a specific trio we may perform the first sum in the
equation, for

1 ikt g k"p )8 0 if ko +kp —kj, 0
h T 1 if ky+ Ky — 10" = 0.
(13)

By choosing in Eq. (9) the indices up'n” and
mn'n", equal to 660" and 57n’n”, respectively, and
using Eq. (13), one finds that sums of the squares of
elements of the (66")(lg" + 6")th blocks are equal to
zero if K, + ko — ky . # 0. Consequently, the ele-
ments of the blocks for which ko + kg — ki, %0
are zero. In the following we assume that ky + kg —
kj,. = 0. We also note that in the second sum of
Eq. (9) we do not have to sum over all «, but only
over those that simultaneously fulfill the three delta
conditions.

Let us begin by calculating the first block column
of each section, that is, the (66")(lg")th blocks, where
we have taken 6" = 0. We first choose 6 = 6" = 6" =
0 and calculate the (00)(/g")th blocks, using Eq. (9.)

We have assumed that k + k' — k] = 0, where k
is the first vector of the star of k, k” the first vector of
the star of k', and k; , the first vector of the star of kj .
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In our notation we have

ks=k, op=c¢;

k=K', og=c¢€;

ki, =kj, ag=c
We choose u = u' = p” =0 and with this choice,
the three delta conditions in Eq. (9) are

a=p8 a=p§, a=pf"

Let us denote the elements of G which simulta-
neously fulfill the three delta conditions by g. We

have then: A
{8y =8y n {7y N {7} (14)

The set of elements {8} is the intersection of the point
groups associated with the three little groups X, X',
and X"

To find the elements B the following remark is
useful. One can define the direct product of two stars,
Sy % Sy, the star S, of the vector k times the star
S, of the vector k' as the aggregate of all vectors
formed by adding vectorally one vector of the star of k
and one vector of the star of k’.5 One may write

Sk X Skr = z SmSkmﬂ,
m

where e, is the number of times the star S, _, appears
in the direct product S, x S,.. Two types of stars
appear in the reduced form of the direct product of
the two stars. If ¢,, = 1 we speak of Sy - as a star of
the first kind, and if €,, > 1, as a star of the second
kind.

It is clear that the elements of G which simulta-
neously leave the vectors k and k’ invariant also leave
k] invariant. Now, if S, . is a star of the first kind,
then the point group {ﬁ”} contains only these elements,

and relation (11) reduces to

{8y = (6" (15)
However, if Sy is a star of the second kind, then
{#"} contains additional elements that, while leaving
k] invariant, do not leave k and k’ invariant. Relation
(11) reduces in this case to (see Appendix A):

{8y = {8y N {B")- (16)
We are now in a position to use Eq. (9) to calculate
the (00)(/g") blocks; this equation becomes

L 5 DA | DEB | WP DRSS | WA

= U('m')(ﬂ") U(rnr’)(n'”) + U(nn’)(d"q"+n")U(nr’)(d"a"+1r")
%
+--+ U(nn')([c——l]d"a”+n”)U(rrr’)([c—l]d”q"—f—n")’ (17)
where the elements {8} are given by Eq. (12) or (13).

5 J. L. Birman, Phys. Rev. 127, 1093 (1962).
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If the irreducible representation Dl"ll',. appears only
once in the reduced form of the direct product, ie.,
¢ =1 then to calculate the (00)(0)th block of the
q"d" columns of U associated with D'lﬂ. we use Eq. (17)
for the case ¢ = 1. The right-hand s1de of (17) is then

Uiy Uleznan - (18)
According to Koster! one finds specific values of
an'n” and 7%'%" such that the left-hand side of
Eq. (17) is nonzero, and then holds =#'#" to these
specific values and lets #%'n” run over their possible
values. For each trio of values of %#n'%" one uses
Eq. (17) with Eq. (18) to calculate U, Ut i) s
and thereby one derives dd'd” equations for the dd'd”
elements of the (00)(0)th block of the columns of the
matrix U. The general case for an arbitrary c is
obtained in a similar manner.?

Now we find the other blocks in the first block
columns of each section, the (66")(/g")th blocks, for
which kg + kg — k; == 0.8

At the beginning of this section, the space group G
was divided for a chosen vector k into g left cosets.
The vector k defined the aggregate of vectors ak = kg,
the star of the vector k. If we were to choose any
other of the vectors k, we could again divide the space
group G into q left cosets and define the star of the
vector kg . The stars of the vectors k and k, are iden-
tical, the star is defined by giving any one of itswectors:
but the division of the space group G is in general
different.

We redefine the first star by the vector k, instead
of k, and define the little group of the vector k,.
The functions yke, for the specific 6, form the basis
functions of D, the irreducible representation of the
little group of the vector k,. The second star is
redefined by k, instead of k', and the star of the
vector k; remains defined by the vector k; .

The irreducible representation D;tl",. again appears
c times in the reduced form of the direct product of the
irreducible representations in the redefinition. To
solve for the (66")(lg")th blocks of U is equivalent to
finding the (00)(/g")th blocks of the matrix U, which
reduces the direct product of the irreducible representa-
tions in the redefinition (see Appendix B).

(19)

Uwnraarartny = Utoaino e smraararinn
holds for all values of the indexes 7, %', %", and /.

8 If Sk,,” is defined by k + k’ — ky. = 0 and is a star of the first
kind, then the (00)(/g")th blocks are the only nonzero blocks of the
first block columns. If Sk, is a star of the second kind, thenadditional
nonzero blocks, (06’)(lq )for which kg + kg — k;, == 0,arein general
such that § =
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Following steps (1) to (17) we have in our redefini-
tion

d;g . 5 Dib| v
volB | VB)lyr DI | v(Blyrar

= (7(11'1’)("") U(rn’)(r”) + U(nn’)(d”q”+n”) U(mr’)(d"q”+n'")
7 7%
+ -+ Uwrte—iavem+0 Ve ge—niarasan - (20)
If the star of the vector K] is of the first kind, then
{8} = {8")
and if of the second kind,

{B} = {oaboz’} N {agB'as™). (3))

Again, by finding specific values of #='7" such that
the left-hand side of Eq. (20) is nonzero, the number
of trios of mn'#" depending on the value of ¢, we find
the elements of the (00)(/g") blocks of U, and therefore
by Eq. (19) the (66")(/g") blocks of U.

We have shown a method to calculate the blocks
in the first block column of each section, i.e., the
(60")(lg")th blocks, 6" =0, for which ky + kj —
k; = 0. In both Egs. (17) and (20) it is necessary to
know only the irreducible representations of the

factor group X/T, X'/T, and X"/T, where T is the-

invariant subgroup of translations.

Instead of using Eq. (9) to calculate the remaining
nonzero blocks of elements, it is advantageous to
review the structure of the basis functions of irreduc-
ible representations of space groups. Using properties
of this structure we derive an alternative method to
calculate the remaining blocks.

For the sake of simplicity we con31der only the
first of the ¢ sections which we are calculating. The
results are, of course, applicable to every section.

The basis functions of the direct product are
ykoyks'. The elements of U give the coefficients of the
linear combinations of these functions which form the
basis functions of the irreducible representation D7 1.. ;
we rewrite Eq. (12) by

v (22)

o= Z Utarnea+nriearrn )'I)., Yr
vm’
The sum is not on all possible values of 6 and §’, but
only on those values which fulfill the condition
ks + kg — kj - = 0. To denote this, we replace the
sign of summation Y, with %10, where k; - denotes
that § and 6’ take only those values for which the
condition is fulfilled.
In particular, for 6" = 0, we have
K’
b= 020' U(0d+n;8’d'+n')(n”)'/’:e'p::o’ (23)

LL
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The basis function of D'l.. must fulfill relation (11),
that is

1/):,1, 0 = (agn | v(oc'o',,))‘op:%”. (24)
For a specific §” we have, using Eq. (22), that
kl"oﬂ
Ki“g” .. T
%"’ v = Z U(ud+1r;n’d'+:r’)(0”d”+n”)'pw”w:r’“’ (25)
pp

where the values of u and ' are constrained by the
condition k, + k' '1’ = 0. On the other hand,

substltutlng (23) into (24), we have
'Pnl o= Z U 0arno @+ (%er I v(otg ))'I’:o'l’:'lo' (26)
'm'
For Eqs. (25) and (26) to be consistent, we must
have

9
(o | V(og))¥honl
k;"gn
= Z D+ [axg V(“g")](udﬂ)wdﬂ)
uu'
T
, Ky
X Dielage | W05 warson@arsan WrpEr
. kl”o"

=3 (Dl | W)
uu

ar’
- Ky Ku'
X Dk"[a,ol" | v(alol”)])(ud+w,u’d’+rr’)(0d+n;0’d’+n')tpw“y)v’“

@7
Substituting this into (26), we have
k1”9 x,”
P = Z E(D'*Ea | v(es.)]
T"" 'I'I
X D;"[“;” v(“;")])(ud+1r;u’d’+tr’)(0d+n;9'd’+n’)

X Ulpginoa-sm oy Vs ¥et's
and comparing this to Eq. (25), we see that

U(ud+1r:u’d’+u’)(0”d"+n")
k"

= o‘f_ (Di#log- | v(og)]
m’ :
X D;"[ag" | v(“g")])(u1+1r;u’d'+r')(0d+ﬂ)(9’d’+ﬂ')
X Ugasmora-tnronm - (28)
By this important relation the (8"d” 4 %")th
column of elements is related to the elements of the
(#")th column. Once the elements of the first block
column are known, the remaining elements of the
section are calculated using Eq. (28).
In the general case when DjL.. appears c times in the
reduced form of the direct product, we can generalize
Eq. (28) as

U(ndHr ud+w Yid q"+0"d"+n")

= 2 (Dix[otg | ¥(2)]
X DZ"[“&'" V() Dz raiwa+aroarsoaren

(29)

X Ulgaymerarrnrtare+a -
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Once the first block column of each section has been
calculated, the remaining elements of each section
are derived, using Eq. (29), and thus the first ¢q"d”
columns of U are calculated.

If the c irreducible representations Dj.. are not
the only irreducible representations appearing in the
reduced form of the direct product Di. x Di.,
then there is a second one, Dir.., that appears c,,,
times. We assume these are the c,,, irreducible repre-
sentations following the ¢ irreducible representations
Dy.,. The dimension of Dy, is n), =g, d.. We
divide the C,,,q. d. columns of U following the cq’d”
columns previously calculated into blocks of dimension
dd' x d, and c,,, sections. The elements of the blocks
of these c,,,, sections are calculated in the same manner
as the blocks of the c¢ sections of the first ¢cd"¢” column
of U.

If there are additional irreducible representations
appearing in the reduced form, we repeat the above
procedure until we have exhausted all the irreducible
representations that appear in the reduced form of the
direct product D}, X Di...

Thus we have obtained a method to calculate the
elements of the matrix U, the Clebsch-Gordan
coefficients: with each irreducible representation
Dy, , that appears c,,, times in the reduced form of
the direct product Di. x D.., we associate C,,,d.q"
columns of U. These columns are divided into blocks
of dimension dd’ x d, and into c,,, sections. The
nonzero blocks (80')(lg,, + 0”) must fulfill the
condition ke + ky — k; . = 0. The nonzero blocks
in the first block column of each section are calculated,
using Eq. (17) or (20); and finally, the elements of
the remaining nonzero blocks are calculated, using
Eq. (29). In the calculation of the Clebsch—Gordan
coefficients it is not necessary to know the irreducible
representations of the space group G. In both Egs.
(17) and (20) only the irreducible representations of
the factor groups X/T, &'/T, and X"/T enter into the
calculations.

So far the formalism is quite general, applicable also
for nonsymmorphic space groups on the boundary of
the Brillouin zone. There are, however, simplifications
for symmorphic groups and nonsymmorphic groups
in the interior of the Brillouin zone.

Equation (5) for nonsymmorphic groups in the
interior of the Brillouin zone may be written as

Dfe,lot| W(@) + a] = e™**Powe=%esTr(g, ) (30)
where we have used

Di[Bou | W(Ba)] = e P0wTY(By,).
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I'; is an irreducible representation of the point group
associated with the factor group X/T.

In subsequent calculations, for each irreducible
representation whose vector k is in the interior of the
Brillouin zone, instead of

DB | v(A)l,a
ik V(ﬁ)l'\r(ﬂ)w

In the case where all three vectors k, k', and k”
are in the interior of the Brillouin zone, the left-hand
side of Eq. (17) will read

dr/qu » kB B A VoA
T(m%&))e ek =k (ﬂ)Fk(ﬂ)an]:’(ﬂ)n’n'F;:,"(ﬂ):”ﬂ" .
(3D

we write

This can further be simplified by noting that
1 if k+k'—k; =0,
“KYB i k4K — K, =K,

where K is a reciprocal lattice vector.
Therefore Eq. (31) becomes

dl/q/l

e—i(k+k’—k,,.”)-v(ﬁ) -
e

=3 LB Te By T, (32)
ifk+k'— k], =0,or
dll ” K 5 "3 A
EL 5 e ®BrIR), TiB)yn LBk, (33)
g (Blv(B))
ifk 4+ k' — Kk, =K.

In the same manner, the left-hand side of (20)
becomes

d/l ”n A , a . N
4 e 3 Pl B T D 9
ifk+k'— m=0,or
d/l ” _Z v , ,
L5 O (B, T8 By T Ber, (39)
14 (ﬂlv(ﬁ))

ifk + k" — kI, =K.
For symmorphic groups we know that w(a) =0
for all «. Equation (30) then reads

Dje, [2] a] = e o TY(B,,),
and denoting (B | 0) simply as (f), the left-hand side
of (17) reads

”’"‘1" 3 BT By T B

The left-hand side of Eq. (20) for symmorphic
groups becomes

d "" > TE Ty B T B

(36)

(37
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We see, therefore, that for symmorphic groups and
nonsymmorphic groups in the interior of the Brillouin
zone, the Clebsch—Gordan coefficients of space
groups can be obtained using only the irreducible
representations of point groups.

In conclusion of this section let us note that the
formalism developed here is applicable to both single
and double space groups.

III. SPIN-ORBIT COUPLING

As an example of the application of the general
theory developed in the previous section, let us treat
the spin-orbit coupling in solids. Although the
group-theoretical aspects of this problem have been
considered before,’ it is worthwhile to give an approach
to it from the point of view of Clebsch~Gordan
coefficients of the whole space group, which is the
subject of this paper.

The Schrodinger equation of an electron moving in
a crystal with a periodic potential V is

P2
I:— + V:lzp = ey,
2m

(38)

The potential ¥ has both the point and translation
symmetry of the lattice, and the symmetry of the
space group G associated with the lattice.

The Schrédinger equation when spin-orbit inter-
action is taken into account is?

h
4m’c*
where o are the Pauli-spin matrices. With the inclusion
of spin, the symmetry group of the Hamiltonian is G,
the double group’ of G.

Consider now the problem that arises when one has
to find the eigenfunctions of Eq. (39) in the lowest
order of perturbation theory. Let us denote by y}°
the orbital eigenfunctions of Eq. (38), and by ¥}
the spin function of the electron. The superscript
k' = 0 of 9§ is a consequence of the fact that spin
functions are invariant under translations. The
functions y}° and ). can be looked upon as belonging
to bases of irreducible representations of the double
space group G. Assume that the orbital function
transforms according to a representation DL.(G).
The spin function 9], undergoes a transformation
according to D}(G). In the lowest order of perturba-
tion theory the eigenfunctions ® of Eq. (39), say yio’,
are linear combinations of the products w:ongl.
The correct eigenfunctions ys¢" of Eq. (39) in the
lowest order of perturbation theory are those linear

2
[L+V+

- (VV x P)- c:l(b — E®, (39)

7 R. J. Elliott, Phys. Rev. 96, 280 (1954).

AND J. ZAK

combinations of yjoyl. that transform according to
irreducible representations of G. The problem of
finding the correct ¢ is therefore the reduction of
direct products which was worked out in the previous
section of this paper.

The functions ykey?. form the basis of the direct
product representation D.(G) x D}(G). Di. being
an irreducible representation of the group G is also an
irreducible representation of the double group G. If
the direct product is irreducible, the spin-orbit inter-
action causes no splitting, and eigenfunctions w:f:' are
equal to the product functions yjey,. If the direct
product is reducible, then

D}+(6) x D¥G) =3 ¢, DA (0. (40)

Since k' = 0, the only star appearing in the reduced
form is the star of the vector k.
¢, is calculated from

1 . o
e =—3 XW(OXYOXZE (O™,
2gh

where gh is the order of the single group G, h being the
order of the invariant subgroup of translations T,
and g the order of the factor group G/T. Following
Zak?®-8, this reduces to

=2 3 g vOmbOE [ [vor, @
2g (3jven
where X3(9) is the character of D}(8), £7[0 | v(8)] is the
character of Di(d | v(9)), and &' [8 | v(08)]1is the char-
acter of DJ» [6 | v(9)]; g is the number of vectors in .S, ,
the star of the vector k. All the representations in
Eqgs. (40) and (41) are now representations of double
space groups.
It is known? that
p}() = -k

X3 = X0, “2)
where § is the “barred” element of the double group.
Since D;.(G) is an irreducible representation of the
single group as well, one has

DiIB | v(B)) = DB | v(B)]
B | vB1 = EIB| v (43)

This being the case, to obtain a nonzero c,, it is
necessary that the irreducible representation D}z’ (G)
be such that

DB | v(B)] = ~ D[ w(B)),
=18 WP = ~ &8 v(B)).

8 J. Zak, Phys. Rev. 151, 464 (1966).

and

and

and
(44)
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By dividing the sum in Eq. (41) into two, the sum
on the elements [ | v(f)] and the sum on the elements
[B | v(8)] [both of which are equal by Eqgs. (42), (43),
and (44)}], Eq. (41) reduces to

=213 | veIXiBE B VL 49)
g Bivipn

Now let us use the results obtained in the preceding
sections: The blocks of U are denoted by (6)(lg + 6");
since D}(G) is not divided into blocks we have dropped
the index 6. The only nonzero blocks are those for
which 6 = 6", To calculate the (0)(/g)th blocks we
use Eq. (17), the left-hand side of this equation

being in our case

495 DI8| v(®)lye DE@)ys D18 | V(O)lyrar-
2g (s{van

Using Eqs. (42), (43), and (44), this becomes

d/l , o
L 5 DIIB | Bl D(B)ys DI I8 | V(B (46)
g Blvpn

To calculate the remaining nonzero blocks we use
Egs. (10), (11), (27), and (28):

3
Uasnnoarsnn = Dg(af?)'l'lU(ﬂ’x)(n") + Dg(o)y2U 2y -
47)

For an irreducible representation DJx appearing c,
times in the reduced form of the direct produce, Eq.
(47) is used to calculate the (0)(/g)th blocks, and the
remaining nonzero blocks, the (6)(lg + 0)th blocks,
are calculated, using Eq. (48). This process is repeated
for all irreducible representations appearing in the
reduced form, and thus we calculate the matrix U,
which reduces the direct product D7.(G) x D}(G).

As mentioned before, the eigenfunctions ® of Eq.
(39), in the lowest order of perturbation theory, are
the functions which form the basis functions of one of
the ¢, irreducible representations D7z which appear
in the reduced form of the direct product. The gd,
columns of U corresponding to this irreducible
representation give the linear combinations of the
product functions 1/)',‘,01;)3, which form these functions,
that is,

ko Ko, 0
Y = Z U(0d+n:n')(lqd,."+o"d,,"+r,")1l)q Yy s
m’

where /I =0,1,---,¢, — 1.

The method as given above is quite general,
applicable for symmorphic and nonsymmorphic
space groups with k on the boundary of or in the
interior of the Brillouin zone. But for symmorphic
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groups and for nonsymmorphic groups within the
interior of the Brillouin zone Eqs. (45) and (46) can
be appreciatively simplified, using the results obtained
in the previous section.

For symmorphic groups and nonsymmorphic
groups with k in the interior of the Brillouin zone,
Eq. (45) reduces to

cn =13 HOXBSE D, “9)
where £7(B) is the character of I(f), the irreducible
representation of the point group formed by the set of
elements {(B | 0)}.

It can be verified by inspection of the character
tables of the point groups,® that for any point group
excepting C; and C;, ¢, is either one or zero. For the
point groups C, and C;, ¢, is either two or zero.
Equation (17) will thus become [we have used Eq. (46)
and dropped d"]

43 TUOuD s TE B = Ui Ve (49)

for all point groups excepting C, and C;. For these
two latter point groups the right-hand side is
replaced by

sk *
U(rm’)(n") U(mr’)(rr”) + U(r;n’)(d”q+n”) U(1r1r')(d"q+1r”) .

In either case the sum is on the point group {(8 | 0)},
the point group associated with the group of the
vector k, since the nonprimitive translations take no
part in the calculation.

We see then that only for nonsymmorphic space
groups with k on the boundary of the Brillouin zone
do the nonprimitive translations enter into the
calculations. For symmorphic groups and non-
symmorphic groups in the interior of the Brillouin
zone only the properties of the irreducible representa-
tions of the point group enter into the calculation.

Finally, let us point our that the matrix U is
completely determined by a matrix that reduces the
direct product of representations of point groups.
Indeed, we use Eq. (48) to calculate the number of
times the irreducible representation D{3'(G) appears
in the reduced form of the direct product D.(G) x
D}(G). Equation (48) is also the equation neces-
sary to calculate the number of times the irre-
ducible representation I'73'(8) appears in the reduced
form of the direct product I';(8) x D’g(ﬂ). In addi-
tion, since gfg is the order of the point group

? G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-two Point Groups (Massachusetts Institute
of Technology Press, Cambridge, Mass., 1963).
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{8 | 0)}, Eq. (49) is also the equation for the elements
of the section associated with the irreducible represen-
tation I'""(8) of the unitary matrix ¥, which reduces
the direct product I'7(8) x D}(B). Therefore, each
section of ¥ associated with the irreducible represen-
tation I'7*'(B) of the point group is the (0)(0)th block
of the section of U association with D!%'(G). The cal-
culation of the unitary matrix V is a strictly point-group
problem.

If Dg(ﬂ) is an irreducible representation of the point
group {(8|0)}, Tu(p) x D§(B) is then the direct
product of two irreducible representations of the
point group, and the matrix is known.? When D§(8)
is irreducible,’® by inspection of the character tables
of the thirty-two point groups one finds that I';(5)
is a one-dimensional representation, and the matrix ¥
is then a two-dimensional unit matrix. In both cases
then the (0)(0)th block of each section of U is known.
The remaining nonzero blocks of each section of U
are calculated using Eq. (47). Once U has been calcu-
lated, the eigenfunctions y'¥ of Eq. (39) can be
calculated.

APPENDIX A

Here we show that when S, - is a star of the first
or second kind, Eq. (14) reduces to Eq. (15) or (16),
respectively.

If A is an element such that

A< By N {f}

then from k + k" =k, we have by multiplying from
the left by 4

Ak + k') = Ak,

Ak + Ak’ = K",

k + k' = ik,
k! =k .
Therefore
A< {8}
and

By N {p} < {8
If 2 is an element such that
A< {87}

then from k + k' = k], again multiplying from the
left by 4,

(AD)

Ak + Ik’ = k",

A+ K =K. (A2)

10 Dg(ﬁ) is a reducible representation for the point groups C,, C;,
Cs, Cys Caps Ci5 Ses Cap» Cs» Cai, Cq, Cop, and Cyy,; itis an irreduc-
ible representation for the remainder of the point groups.

D. B. LITVIN AND J. ZAK

We have either
Ak # Kk,
&' # K,
or (A3)
Ak ==k,
K =K.
[We cannot have
k=k
& #K
for inserting this into (A2) we would have
k + ik’ = k;,,
k+&k=k+Kk,
Ak =k,
which is a contradiction.]
We will then have, either
ko + kj = K,
or
k + k'= ik},
where Ak = kq and Ak’ = kg, .

For k”, which belongs to a star of the first kind, the
first possibility in (A3) is forbidden by definition of a
star of the first kind; the star S, . and consequently
the vector k;, defined by k + k' = k;, appears only
once in the direct product S, X Sy.. Therefore we
have for stars of the first kind

k + k' =k,
This means that

A<= {8y N {g}

{8y <= {8 N {6} (A49)
From Eqgs. (Al) and (A4) we have for stars of the

first kind
{8} = {6 N {8}
and therefore Eq. (14) reduces to
{8 = 16"} (AS)
For stars of the second kind, (A4) is not applicable,
and using only (A2), Eq. (14) becomes
By =By N {6}

APPENDIX B

Here we prove Eq. (19), that is, by redefining the
stars Sy and . by the vectors kq and kg, respectively,
the (00)(/g")th block of U, the unitary matrix that
reduces the direct D} +(G) x Dy, +(G), is equal to the
(06")(lq")th block of the unitary matrix U, which
reduces the direct product Di+(G) X Di.«(G).

and therefore

(A6)
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Let V be the unitary transformation that reorders
the basis functions of Di.(G) to form the basis
functions of D,'cg.(G). We have

ko
Y

k,

Voge = -, (B1)

where the new basis is some permutation of the old
basis with the functions y}? in the top position.

Equation (B1) implies that the structure of ¥ is of
the following form:

0 ", 0
B : (B2)

where the large center zero denotes the 6th block
column. The irreducible representation D}.(G) in the
new basis is

VDGV = Dj,.(G). (B3)

In the same manner we define a unitary matrix W,
which transforms the irreducible representation
Dr..(G) into D,;io,.(G).

U is defined as the unitary matrix which reduces the
direct product D +(G) X Dy +(G), that is,

U~IDG) X Dy,»(G)]T = (reduced form). (B4)

221

Using Eq. (B3) and the comparable relation for
D,’c'lo,*(G), we see that the left-hand side of the (B4)

can be written as
U7 [VDi«(G)V ~' x WDL«(G)W™T

= UV x W)[DG)(V x W)T.
Using this and the definition of (B4) becomes
U3(V x W)U (reduced form) U-X(V x W)U

= (reduced form).

Therefore
U WV x WMU=1
and (BS)
U=V x WU.

We now use (B5) to calculate an element of the
(00)(lg")th block of the first cq"d” column of U:

ﬁ(ﬂn’)(la”d”+n") = 2 V(n)(ad+b)W(n')(a'd'+b')
o
X Ugarnwasoragasn - (B6)
From the structure of ¥ and W we have

I/(rl)(ad+b) = 6(0 - a)é("? - b)’
Worraa+v) = 80" — a’)o(n' — b'),
and inserting this into (B6), we have
U(nn’)(lq”d"+q”) = E U(ad+b;a’d’+b’)(lq"a‘.”+rl")

aa’
vb’

X 8(0 — a)d(n — b)o(0’ — a")é(n' — b")
and

U(m:’)(la"d"+n”) = U(9d+n;0’d’+n’)(lq”d"+'1") .

This last relation is Eq. (19).
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