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where N is a constant. From Eqgs. (5.12) and (5. 14)
one can conclude without any difficulty that the Born
expansion is uniformly convergent for

¢N < 1. (5.15)

The convergence verifies the validity of the Born ex-
pansion in Eq. (5.11).

From Egs. (3.19), (5. 8),and (5. 11) the final form for
the radial function Y,,,(¥) can be expressed as

Ymn(y) = (1/y)ei0n Fn(ﬁ’y)

MING CHIANG LI

+ [ ay G, (v, ) f2@,")
s.e] 0 0

+ Zi [T TRERN A1 SN CTRY
=

x Knm(ylfyz) ° "Knm(yi—]_’yi)fZ(ﬁ;yi)]-
(5.16)

Since the series is uniformly convergent, Eq. (5. 16)
is a valid expression. As ¢ > 0, the integral part re-
duces to zero and the function y"le“’ﬂFn (n,v) is the
zeroth-order approximation for the radial function
Yna(9).
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On the Decomposition of Direct Products of Irreducible Representations

Daniel B. Litvin
Depavimen! of Physics, Unversily of Brilish Columbia, Vancouver, Canada
(Received 27 March 1972)

A lemma concerning irreducible representations contained in the decomposition of a direct product of irredu-
cible representations of simply reducible groups is generalized to arbitrary decomposable unitary and non-

unitary groups.
1. INTRODUCTION

In the application of group theory in physics the prob-
lem very often arises of decomposing a direct pro-
duct of two irreducible representation into a sum of
irreducible parts. In the theory of solid state physics
such a decomposition is required in defining selec-
tion rules in scattering processes in magnetic and
nonmagnetic crystals. 1.2 A classical example of

this is the addition of angular momentum in quan-
tum mechanics. Wigner,3 using a classification of
irreducible representations given by Frobenius and
Schur, proved a lemma concerning irreducible re-
presentations contained in the decomposition of a
direct product of irreducible representations of
simply reducible groups. The three-dimensional
rotation group is a simply reducible group, and, for
example, the fact that the addition of integer angular
momenta does not contain half-integer momenta can
be deduced directly from Wigner's lemma.

The purpose of this work is to generalize Wigner's
lemma. We first review the Frobenius and Schur
classification of irreducible representations and
Wigner's lemma for simply reducible groups. This
lemma is then generalized to arbitrary decompos-
able unitary and nonunitary groups.
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. SIMPLY REDUCIBLE GROUPS

Let A% denote the kth irreducible representation, and
u the elements of a unitary group G. Frobenius and
Schur have shown that the irreducible representa-
tions of the group G can be classified into three
cases?:

Case A: A*() is equivalent to A*@)* and poten~
tially real,i.e., can be brought into real form.

Case B: Af(x) is equivalent to A*@)* and pseudo-
real, i.e., can not be brought into real form.
Case C: A*(u) is not equivalent to A*(u)*.
For Cases A and B, A*(u) is equivalent to A*(u)*:
Ar)* = BB,

and
BkBk* = C,E,

where C, = + 1 or — 1 for Cases A and B, respec-
tively.

A group is called simply reducible if3:

(1) Every element is equivalent to its reciprocal.
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(2) The direct product of any two irreducible
representations contains no representation
more than once.

The first condition means that all irreducible re-
presentations of a simply reducible group are either
Case A or Case B.

The following lemma for simply reducible groups has
been proven by Wigner3:

Lemma 1: The direct product of two Case A or
two Case B irreducible representations of a simply
reducible group contains only Case A irreducible
representations; the direct product of a Case A and
Case B irreducible representation contains only Case
B irreducible representations.

III. UNITARY GROUPS

For an arbitrary decomposable unitary group G we
prove the following lemma:

Lemwma 2: The direct product of two Case A or
two Case B irreducible representations of an arbit-
rary decomposable unitary group G does not contain
Case B irreducible representations; the direct pro-
duct of a Case A and a Case B irreducible represen-
tation does not contain Case A irreducible represen-
tations.

The direct product, for example, of two Case A irre-
ducible representations contains only Case A or
Case C irreducible representations, each represen-
tation possibly more than once. For simply reduc-
ible groups Lemma 2 is identical to Lemma 1.

Proof of Lemma 2: We take the direct product
Alu) = Atu) X Aifu), where Al and A7 are either Case
A or Case B irreducible representations, that is,

Atu)* = BflAl(u)B, 5 BzBZ* = CiE,
i)* — B-1A7 * _
M)t = B1aiw)p, BB =CiE. (1)

We show that if the decomposition of the direct pro-
duct contains the irreducible representation A* equi-
valent to AR*,

AR@)* = Bt ARw)B,,

thenC, = CiCj.

The direct product A(x) is decomposed via a simi-
larity transformation with a unitary matrix U:

Bk Bk* = CkE, (2)

A () =UIA@)U.
We assume that A is in the following form

Ak
AR

AP

where A* appears n times and is assumed to be equi-

1387
valent to A** i.e.,is either a Case A or Case B irre-
ducible representation.

Using (1), we have
A, @)* = U 1la@)*U*
= [U~1(8; x ﬁj)U*]_lAy ONU1(, X B].)U*].

Denoting U~1(g; X ,Gj)U* by B, we write the preceeding
relation as

A, @)* =p1a, ()8, (3)
where B8* = C,GE.

B is subdivided into blocks corresponding in dimen-
sion to the irreducible representations appearing in

Fi1 Biz ...
B= | P21 B2z ...

From (3) we have fori,j =1,2,...,n
Ak(u)* = i_lek(u)Bij . (4)

The g;; for i =n andj >#n,andj = n and ¢ > n, are
zero for they connect nonequivalent irreducible re-
presentations. 8 therefore is of the form

Bin - Bu O
B=| B, ... B,

We consider now only the submatrix of 8 containing
the matrices Bij» i,j =1,2,...,n,and denote this
by 8. From the properties of 8 we have

AF()* Aku)
=1 B (5)
AkQu)* A*(u)
and
Bé* = CiCjE' (6)

We will show that E can be transformed into the
quasidiagonal form:

o
o

.

o

From (2) and (5) we then have A¥* = ¢~ 1A%y and

aa* = C,E,and from (6) that aa* = C,C,E, thus
. . . 7

giving C, = CiC]. proving Lemma 2.

The matrix § of relation (5) is not unique. (5) will
remain unchanged under any similarity transforma-
tion with a unitary matrix of the form A X E, where
E is of the same dimension as the irreducible re-
presentation A* and A is an arbitrary unitary matrix
of dimension 7, the number of times A* appears in
(5).5
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The matrix B_ can be replaced by
(A XE)B (7

without changing the form of relation (5).

We seek a matrix A that will put (7) in the required
quasidiagonal form. To do this, we look at the
structure of the matrix 8. From (4) for i =j = 1 and
for a general 7 and j

Ak@)* = g1
Ak(u)*

Ak(u):B 11?

= ﬁi_lek(u)Bij

from which we have
BijBI%Ak(u) = Ak(u)Bij Bl_f

giving, by Schur's lemma, % Bij = NBiws where A;; is a
constant. B can be written now as

M1bi1

. .

A,1B11

Alnﬁll All ¢ >tln

™
Il

)\nnﬁll Anl Anrz
X B = A XBy;.

Since both g and B, are unitary matrices,a is also
unitary. Finally, by choosing A =171, (7) takes on
the required quasidiagonal form and the proof of
Lemma 2 is complete.

IV. NONUNITARY GROUPS

A nonunitary group M contains elements half of
which are unitary and half antiunitary. The unitary
elements form ap invariant subgroup G of index two,
and we can write M as

M =G + Gaq,

where a is a fixed antiunitary element.

Corepresentations D* of a nonunitary group M are
constructed in one of three ways depending on the
following classification of the irreducible represen-
tations A* of the unitary subgroup G7:

Type I: A*() is equivalent to Ak(a luay)*,
Ar(aglua )* = g;16Fu)B, and B,Br = A”(a2)

Ak(u) is equivalent to A*(agyluay)*,

Type II:
BBy = —4* (a3).

At(aglua,)* = Bta*w)g, but
Type II: Ak@) is not equivalent to A*(agluay)*.
The three types of corepresentations corresponding
to the above classification of the irreducible repre-

sentation of the unitary subgroup G are?
Type I: Dt(u) = Ak@u), Dt(uay) = A*@)B,.

Type 1I:

D*u) = Ak(u) D*ua,) = BH
N Ak@))’ o7 T\~ ar@)B, |

(8)
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TABLE I: The number of times the corepresentation D* is con-
tained in the direct product D¢ X DJ, denoted by C is given in terms
of the a' % the number of times the 1rreduc1ble representatlon Ak ig
contamed in the direct product Ai X Aj. Primed suffices, as in d;.
denote that the irreducible representation Ai{aglua)* replaces
Aifu) in the direct product.

Di Di Dk ij

I I I df].

I I o 3k,

1 1 m a¥,

I II 1 2a'fj

1 o o dll?j

1 I il 2d’*

I m I d" + df],

1 I Il 3k + St

I m m dxkj + d{‘j,

bl it 1 da,

1I i i dej

11 I o1 4d{§

II m I 2dk + 2d,

i m i d; +d¥,

n m n1 2dk, + 2dk,

I m I b +dk, + b+ db
1 m I %dfj + idk + ldk + sdb
11 I m df +adf, +db, +d,.

Type III:

Ak(u) A*uag)
Dk{u) = ( Ak(%luao)*>, Dk(uay) = (Ak(a;)luao)* >

The decomposition of direct products of two corepre-
sentations of a nonunitary group M can be analyzed
in terms of the decomposition of direct products of
irreducible representations of the unitary subgroup
G.

Let C% be the number of times the corepresentation
Dk ig contamed in the direct product D? X DJ, Ck is
calculated from®

DX ) x @3 x (DH))*
Ck =
5 , ®)
L x OH) x 04)*

where x (Di(x)) is the trace of Di(«). The number of
times an irreducible representation A* of the sub-
group G of M is contained in the direct product A? X
Aj is denoted by df; and calculated from

dk, = (/n) 25 x (A1 @)) x (A7) x (a%@))*, (10)

where lk is the dimension of A* and » the order of
the group G.

By using the explicit form of the corepresentations
(8), the Ck defined by (9) can be written in terms of
the d; k defined by (10). The explicit form of the rela-
tion depends on the type of the corepresentation

Di, Di, and D*. The relations between the C% and the
dk taken from Ref. 9, are listed in Table 1.

ij?
We prove the following lemmas:

Lemma 3: The direct product of two Type I or
two Type II irreducible representations of the sub-
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group G of an arbitrary decomposable nonunitary
group M = G + Ga, does not contain Type II irre-
ducible representations; the direct product of a
Type I and a Type II irreducible representation does
not contain Type I irreducible representations.

Lemma 4: The direct product of two Type I or
two Type II corepresentations of an arbitrary de-
composable nonunitary group M does not contain
Type II corepresentations; the direct product of a
Type I and a Type II corepresentation does not con-
tain Type I corepresentations.

Proof of Lemma 3: We take the direct product
A = A X Aj, where Af and AJ are each either Type
I or Type II irreducible representations of the sub-
group G of a nonunitary group M:

1389

Ailgglua g)* = p;1AMu)B;,
Ailapluag)* = B;lAJ'(u)Bj,

ﬁiﬁi* = Ci Ai(a(z));
. )
BB = C;al(ag).
If the decomposition of the direct product contains
the irreducible representation A*(u) equivalent to
Ak(aylua y)*, possibly more than once,
Ak(af)luao)* = ﬁ;lAk(u)Bk, 61,3: = CkAk(aﬁ),

then C, = C,C,. The remainder of this proof is
parallel to the proof of Lemma 2.

The proof of Lemma 4 follows immediately from
Lemma 3 and Table I.
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It is shown that the symmetrization of N particle states by means of the orthogonal units of the algebra of the
symmetric group S, yields the Gel'fand basis states of the irreducible representations of U(3). The existence of
generalizations of the Dirac identity is demonstrated, and a connection between the symmetrized two- and three-
body exchange operators and the invariants of U(3) is established.

INTRODUCTION

The study of the unitary group U(3) and, more gene-
rally, of U(r) is of great interest to present day
physics. Most well known is the successful classifi-
cation of the elementary particles according to the
octet model as proposed by Gell-Mann and Ne'emanl
in 1962. A physically different application of the
theory of the unitary groups has been to the many
particle system. In fact, a great deal of the develop-
ment of the theory—associated with the names of
Racah and Wigner2—has been done towards the goal
of classifying the electronic states in the atom. More
recently, the theory of the unitary groups has been
used to obtain approximate solutions of the nuclear
many-body problem.3

The study of the many-body system leads, in a rather
natural manner, to consideration of the operations
which permute the particles and, thus, to the introduc-
tion of the symmetric group Sy. The connection be-
tween the two groups U(r) and Sy has been known
since the work of Young and Frobenius around 1900.
Later, recognizing the importance of the concepts

for quantum mechanics, Weyl4 continued research
along these lines and laid the foundation for our pre-
sent understanding of the subject. He formulated the
concept of duality and gave it an expression in a num-
ber of theorems. These early investigations have
been concerned with the irreducible representations
and have used the characters as tools. It was only
within the past decade that a systematic investigation

of the basis states has been taken up, pursued mainly
by Biedenharn5:6 and also by Moshinsky 7:8 and their
collaborators. Yet, the relevance of the symmetric
group for the Gel'fand?® states has been considered to
a limited extent only. Moshinskyl© showed that a
certain class of Gel'fand states had a definite per-
mutational symmetry, and Ciftan and Biedenharni?
and Ciftanl2 uysed the concept of “hooks” (which origi-
nally has its proper meaning in the symmetric group)
to construct the Gel'fand states of U(4).

In the present paper we show that the duality between
U{r) and Sy can be extended to the individual basis
states defined by the subgroup decompositioné U(r) D
Up —1)D --+ DU(1) on the one side and by an analo-
gous chain on the other side. It will be shown that the
Gel'fand states can be obtained by use of operations
of Sy only, thus supplying a link to the understanding
of the hook structure concept for the unitary groups.
In addition to their transformation properties under
the unitary groups, the Gel'fand states will be seen

to transform like the basis states of the irreducible
representations of S;. The situation will be pictured
by introducing a “combined Young—Weyl tableau.”

As a first step we shall demonstrate the existence of
generalizations of the Dirac identityl3 which emerge
naturally by considering the operations of both groups,
U(n) and Sy, in the same space. In this way we are

led to explicit expressions for the fully symmetrized
Majorana operator and the analogous three-body
exchange operator in terms of the invariants of U(3).
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