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It is shown that calculating Clebsch—Gordan coefficients of a nonunitary group can be reduced to
formulas containing only representations of the unitary subgroup and additional conditions due to
the antiunitary symmetry. This is another example demonstrating that, in applications involving
corepresentations of nonunitary groups, the analysis can be made mainly in terms of representations

of its unitary part.

I. INTRODUCTION

Nonunitary groups and their corepresentations are of
great importance in magnetic materials. In such ma-
terial an antiunitary element is a product of time re-
versal and an element of a space group. In nonmag-
netic materials time reversal is itself a symmetry
element. In every case where an antiunitary element
is added to the ordinary space ‘group there is a need
to deal with corepresentations. The theory of nonuni~
tary groups and their corepresentations was founded
by Wigner,1 developed by Dimmock and Wheeler,274
Dimmock,5 and has been reviewed by Bradley and
Davis.®

The problem often arises of decomposing a reducible
corepresentation of a nonunitary group into a sum of
irreducible parts. An example of this is in determin-
ing selection rules governing transitions in magnetic
crystals, where the reducible corepresentation is a
direct product of two irreducible corepresentations.
Sometimes more detailed information is required, and
one must calculate the matrix which transforms the
corepresentation into a reduced form. The elements
of this matrix are called the Clebsch—Gordan coef-
ficients. Such information is needed, for example, in
the Eckart-Wigner theorem.1.7

The Eckart-Wigner theorem was originally applied to
calculate matrix elements of operators in physical
systems of spherical symmetry, and found widespread
use in such varied fields as atomic spectra, NMR, and
elementary particles. Koster8 generalized this theo-
rem to make it applicable to other unitary groups,
and this generalization takes the form

(‘P&IP’S'\WB) = aon.(aB) + a2UG+nk,(oLB) +oeee,

where ¢, 7, and 2 denote irreducible representations of
a unitary group G;aq, a,, * -+ are constants called
“reduced matrix elements” and U is the matrix of
Clebsch—Gordan coefficients.

For physical systems of spherical symmetry the
Eckart-Wigner theorem takes on a simple form with
only one term on the right-hand side of the above re-
lation. In such a case knowing only the Clebsch—-Gor-
dan coefficients one is able to find selection rules and
compare transition intensities. For systems of other
unitary symmetry one usually needs to know more in-
formation about the physical system.

The Eckart—-Wigner theorem has been generalized by
Aviran and Zak® to nonunitary groups. It was shown
that the addition of an antiunitary element leads in
general to additional connections among the reduced
matrix elements.
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This paper deals with the problem of finding the Cle-
bsch—Gordan coefficients for nonunitary groups. The
method used is one put forward by Aviran and Zak9.10
based on the method developed by Koster8 for unitary
groups. It is shown that the finding of Clebsch-Gor-
dan coefficients can be reduced to formulas contain-
ing only representations of the unitary subgroup of
the nonunitary group, and additional conditions due to
the antiunitary symmetry.

We review in Sec. II the construction of irreducible
corepresentations and the calculation of reduction co-
efficients for nonunitary groups. We emphasize the
role played by the unitary subgroup. In Sec.IIl a
method is derived of finding the Clebsch—Gordan co-
efficients for nonunitary groups. An example is given
in Sec.IV.

Il. COREPRESENTATIONS OF NONUNITARY
GROUPS

A nonunitary group H contains elements half of which
are unitary and half antiunitary. The N/2 unitary ele-
ments, denoted by u, form an invariant subgroup G of
index two and we can write H as H = G + Ga,, where
a, is a fixed antiunitary element. The irreducible
corepresentations D¥ of a nonunitary group H are
constructed in one of three ways depending on the fol-
lowing classification of the irreducible representa-
tions A*(agluay)* of the unitary subgroup G of H':

Type I: A*u) is equivalent to A*(agluay)*,

A¥agluag)* = pr' AHu)pt  and  pRBR* = AR(G3).

Type II: A*(u) is equivalent to A*agluag)*,

AMagluag)* = ¥ AMu)BE  but  BEBR* = — A*(a3).

Type III: A*(u) is not equivalent to A¥agtuay)™.

The three types of irreducible corepresentations of H
corresponding to the above classification arel

Type I DXu) = A¥u), D*ua,) = Aku)gt.

Type II:
Ak(u)
DHu) = )
Ak(y)
Ay )p*
D*uay) = , (1)
- Ak(u)Bk
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Type III:

Au)
DH(y) = ,
Ak(gglua)*,

( Ak(ua%)>
D*uay) = .
AMaglua)*

The number of times an irreducible corepresentation
Dk is contained in a reducible corepresentation D is
denoted by C* and calculated from11

Ck =2 D)) (D u))*/ 23 x D*w)) y(D¥u))*, (2)

where x(D*u)) is the character of D*(u). The sums

in (2) are over the elements u of the unitary subgroup
only. When the reducible corepresentation is direct
product of two irreducible corepresentations, D = Di
x Di, eq:(2) takes the form11

CE =20 WDiw)) DI (u))y{ Dru))*

/25 X(DHu)) {D*u))*. (3)

By using the explicit form of the irreducible corepre-
sentations given in (1), the coefficients C,,’f,- can be
written in terms of coefficients df , the number of
times the irreducible representations A of the uni-
tary subgroup is contained in the reduced form of the
direct product A? X A7, The explicit form of the rela-
tion between the Cf; and the d}; depends on the types
of the irreducible corepresentations D¢, D7, and D#
appearing in (3). The relation between Cf, and the

d,-’;-, for all possible cases, has been given by Bradley
and Davis.6

(1. CLEBSCH—GORDAN COEFFICIENTS FOR NON-
UNITARY GROUPS

The matrix U, whose elements are the Clebsch-Gor-
dan coefficients, transform a corepresentation D into
reduced form in the following manner?!:

D(w)

" D) . @
D™(u) i

UD(u)U-! = D (u) =

DXa)

: D"(a) ’ (5)

UD(a)U-1* = D,(a) =
D™a),

where u is a unitary element, a an antiunitary element,
and D, the reduced form of D.

The matrices D(u), for all «, form a representation of
the unitary subgroup G of H. The irreducible corepre-
sentations appearing in Dfu), for all «, are either
irreducible representations or sums of irreducible
representations of the unitary group G. Consequently,
to find the matrix U from (4) alone can be considered
a calculation of a matrix which transforms a repre-
sentation of a unitary group into reduced form. Such
a calculation can be preformed using Koster's meth-
od.8 The matrix U so found is not unique, and requir-
ing that U also satisfies (5) imposes additional condi-
tions on its elements.
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The theory of corepresentations is such that a single
method applicable simultaneously to all three types
of irreducible corepresentations which may appear in
D, is unobtainable. We therefore discuss three cases
corresponding to the three types of irreducible core-
presentations. In each case we derive from (4), using
Koster's method,8 equations from which the elements
of U are calculated, and the additional conditions on
these elements imposed by (5).

A. Type | corepresentations

We assume that a Type I irreducible corepresentation
D* of dimension d appears ! times in the reduced
form D,. To calculate the dl rows of U corresponding
to these corepresentations, we rewrite (4) as D(u) =
U-1D,(u)U take the pgth element, multiply by D*(u)*,

= AKu)} , sum on u:

]Wd—z- 22 Dlu), ARw)%,
= ]T% ; UxU,, 2 D, (u), AHw)X, .

Using the explicit form of D,(u) and the orthogonality
relations for irreducible representations, we have

d
N/2 Zu; D(u) pq 8¥u)y, = UpyUng + Udim pUsin.q

+oeee Ul vyasmp U(l—l)d*'n.Q, (6)

The elements of U calculated from (6) satisfy (4),8
but not necessarily (5). We now derive the additional
conditions on the elements of U calculated from (6)
imposed by (5). We rewrite (5) as D(a) = U-1D(a)U*.
Every antiunitary element @ can be written as a = ua
and D(a) as D?u)D(ao). Taking the pgth element, mul-
tiplying by D*uag)¥, = (a*(u)pR)} ,, using the ex-
plicit form of D, (a), and summing over u, we have

F72 D (DwDlag),(aru)p)z,

= U}

*
mPU* + U‘I‘m-PUd+"'nq

ng
+oeee U("i—l)a+m.p[]("i—1)d+n.q,

We rearrange the left-hand side as

% D(ag), B (de Z D(u)p,,Ak(u),,,,),
and, using (6), we have
§ Dlag), B U Uy + Ui pUiy x
+ oo+ Ul parmpUc-1ary. <)
= Uk Uy ™ UdimpUlin.g
t oo UlnaempUd-asmig:

Multiplying by U 44, ,, SUumming on p, and using the
orthogonality relations of the rows of U gives

Ubd*m.q = §ﬁ gnUlziw.xD(aO):q’ Q)

where b =0,1,...,1 — 1. Relation (7) is the addition-
al condition imposed by (5) on the elements of the
matrix U calculated from (6).
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TABLE I: Corepresentations of the unitary subgroup C;, and 6.
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O R R A A R R
O S I B RO O R
S S A O R O B R GRS R

€ = ¢i2/3

B. Type |l corepresentations

We assume that a Type II irreducible corepresenta-
tion D* of dimension 2d appears I times in D,. From
(4), the 2ld rows of U associated with these corepre-
sentations are calculated from

d
m Z) D(u)quk(u);n = Ur::,pUn,q + U;;m,pUd«i-n,q
u

and
JWd'Z 23 Dlw), AMaglua),,
u

U.

— I7* %
- Ud+m,pUd+n.q + U3d+m.p 3d+n.q

+ .

*F U tyaim M2r-1)asn. (9b)

From (5) one derives the additional conditions impos-
ed on the elements of U calculated from (9a), (9b) to

trer + Ui naempU@i-vamg: ®)  pe
— % *
From (5) one derives the additional conditions on the Usdng = Z,} Udor1raen s Dlaolys (10)
elements of U calculated from (8) to be where b = 0. 2. 4 21— 2
- ? b bR ] .
= %*
Utrvarna = Z BTy Dlaoky IV. EXAMPLE: C,, WITH TIME REVERSAL
for b = 0.2. 4 91— 9 We calculate the matrix U which transforms into re-
I A : duced form the direct product D3 X D3 X D5 of irre-
ducible corepresentations of the nonunitary group H =
C. Type HI corepresentations Cs, t+ Cgfe,where ag = 6,i.e.,tfime reversal. The
. . irreducible corepresentations of this nonunitary grou
:’E’e a;fun;ed_that a_Typthm 1rredulcg)le co.regres;nta- are given in Tab})e I. The corepresentations arg ill P
ion D% of dimension 2d appears ! times in D,. From - : 5 ;
(4), the 2Id rows of U associated with these czrepre- of Type I with the exception of D3 which is of Type I
sentations are calculated from Using relation (2), one finds that the reduced form
contains the irreducible corepresentations D4 and D5
d 5 D). A*w)* each two times,i.e.,D3 X D3 X D5 =p4 + D4 + D5 +
N72 o4 DWipg A Wmn D3, To calculate U, we first use (4). Specifically, to
calculate the first four rows of U corresponding to
—U* U +UF D the two D4(u) appearing on the right-hand side of (4),
— Ymp “ng 2dim,p-2din,q we use relation (6), and for the last four rows, corres-
ponding to the two D5(u), we use relations (9a), (9b).
Foeee + U(’%z_z)mm,p['bz—zmm.q (9a) ] The matrix U so derived is
0 0 0 0 0 0 by gets by ,e?®
bigeit  — by, eid 0 0 0 0 0 0
0 0 0 0 0 0 bgygeit AL
byoeit  — by eis 0 0 0 0 0 0
0 0 (c1aN2)ei™ (c1,N2)ei® (e N 2)eit — (e, N 2)ei® 0 o |
0 0 @11V 2)etr (dpN2)eiv — (dy N 2)etr (N 2)eiv 0 0
0 0 (cai/N2)ei™ (cpp/N2)ei® (cpyN2)ei™ — (cyyN2)ei® 0 0
0 0 (@y1/V2)eir (dyo/V2)eiv — (dyy /V2)eir (dyy/V2)eiv 0 0

b Cyy Cyo d,, d .

12} ("1 712} ‘and (1! " 12} are unitary
ba2 C21 C22 dyy dyp
matrices,8 and A, 6, 7,9, y,and v are arbitrary
phases.

b
where (b“

21
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f

The additional conditions imposed by (5) due to the
antiunitary symmetry for the rows of the matrix U
corresponding to the corepresentations D4 are de-
rived from relation (7), and for the rows correspond-
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ing to the D5 from relation (10). From (7) we derive

(:J-Zem = d;!‘l e-i(2y),
the additional conditions

(12)
where j = 1, 2. In addition, from the unitarity of the

bjpets = b}ei(x-24-9), (11)  matrix Z“ :12) and (11), one derives that b,, =
21 ‘22
where j = 1,2. From (10) we derive the additional . ,
conditiﬁns ’ m (10) w lve the additio 1/N2eitand by, = + ib,,, where £ is an arbitrary
) phase factor. By using conditions (11) and (12), and
c;1€'T = d;.“ze“i(z AN writing B8 = £ + 6,the matrix U takes the form
1
0 0 0 0 0 0 eila-2¢-9) — i
eila-2¢-8) — eiB 0 0 0 0 0 0
0 0 0 0 0 0 F jeila-2y-8) & jeif
1| F jeila-29-8) F jeib 0 0 0 0 0 0
73 0 0 B, @YD) @YD e i) —dtieti@vn 0 0 ’
0 0 dy,e% dyqetv —dyqety dqqet” 0 0
0 0 dpe @YD a3, i@V diaeiev) — df i@V 0 0
0 0 dyse®y dyqet? —dgy ety dgget? 0 0

where (d” 412\ ig a unitary matrix and 8, v,and y are
dg dag

arbitrary phases.

By using the additional conditions imposed by (5), the
ambiguity of the matrix U calculated from (4) has
been greatly reduced. From three two-dimensional
unitary matrices and six arbitrary phases, we have
now only a single unitary matrix and three arbitrary
phases.
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