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A new translation function, a generalization of the translation function introduced by Rossmann, Blow, 
Harding, and Coller, is defined. Peaks of this new translation function are related to the orientation and 
point group of and translation vectors between molecules in a crystal. A method is formulated to deter- 
mine all peaks of this new translation function corresponding to a given crystal. The applicability of this 
method is shown in the analysis of translation function data to determine the translation vectors between 
molecules, and to determine the point group of the molecules when the solution of the rotation function 
problem is not unique. This new translation function has an advantage over the translation function 
introduced by Rossmann and co-workers, in that it may contain peaks which are not streaked. It is pro- 
posed that this new translation function be used in the structure determination of bovine liver catalase. 
For trigonal crystalline bovine liver catalase it is shown how this new translation function can be used to 
determine the point group of and the translation vectors between the catalase molecules. 

To determine the structure of biological macromole- 
cules from crystal X-ray diffraction data, without the 
use of isomorphous derivatives, the 'molecular replace- 
ment method'  has been developed (Rossmann, 1972). 
This method consists of three steps: 

1. The rotation problem: determining the orienta- 
tion and point group of the molecules in the crystal. 

2. The translation problem: determining the transla- 
tion vectors between molecules in the crystal. 

3. The phase problem: using the information ob- 
tained in the first two steps in determining the struc- 
ture factors. 

The methods used in solving the rotation problem 
are based on the comparison of Patterson functions in 
different orientations. The Patterson function of the 
crystal of unknown structure is compared with a 
Patterson function constructed on the basis of partial 
knowledge of the molecule's structure (Tollin & 
Cochran, 1964; Nordman,  1966), with the Patterson 
function of a known molecule of similar structure 
(Adams et al., 1970), or when none of the structure is 
known, with itself (e.g. Johnson, Argos, Rossmann & 
Wagner, 1975). This comparison can be carried out by 
using the rotation function N(A) defined by Rossmann 
& Blow (1962): 

~(A) = _[,, P(u)P( A u)du ( 1 ) 

where A is a proper rotation, and the integration is over 
a volume U dependent on the size and shape of the 
molecules. 

In the case where the Patterson function of the crys- 
tal of unknown structure is compared with itself, a 
method to determine the orientation and point group 
of the molecules from the peaks of the rotation func- 
tion, equation (1), has been formulated by Litvin 

(1975). This formulism has been used in the analysis of 
the rotation function of crystalline satellite tobacco 
necrosis virus (STNV) and crystalline bovine liver 
catalase (Litvin, 1975). As shown in the case of crys- 
talline bovine liver catalase, the solution of the rotation 
function problem may not be unique (Eventoff & 
Gurskaya, 1975; Litvin, 1975). Similar methods for 
solving the translation problem have been used when 
all or part of the molecule's structure is known (Tollin, 
1966; Crowther & Blow, 1967; Huber, 1969), with the 
use of known molecules of similar structure (Tollin, 
1969; Lattman & Love, 1970), and when none of the 
molecule's structure is known (Rossmann, Blow, 
Harding & Coller, 1964; Dodson, Harding, Hodgkin & 
Rossmann, 1966). 

In this paper we shall discuss the translation prob- 
lem, restricting ourselves to the case where none of the 
molecule's structure is known. The method which has 
been used to determine the translation vectors, in this 
case, is based on the analysis of peaks of the translation 
function T(x) introduced by Rossmann et al. (1964). 

t ~  

T(x) = _I, P(x + u)P( - x + C2u)du 

where P(r) denotes the Patterson function of the un- 
known crystal, C2 a rotation of 180 °, and where, as in 
the rotation function, equation (1), the volume U is 
dependent on the size and shape of the molecules. 

Using the inversion symmetry property of the Pat- 
terson function, we will rewrite and denote this transla- 
tion function as 

T(x, in) = l ]P (x  + u)P(x + mu)du (2) 

where m = C2 is a mirror plane, the product of inversion 
T and the rotation C2. We have denoted this transla- 
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tion function as T(x,m) to denote explicity the mirror 
plane m appearing on the right-hand side. As has been 
pointed out (Rossmann et al., 1964; Rossmann, 1973), 
from this translation function, for a specific mirror 
plane, one can determine only the components of the 
peaks, and consequently of the translation vectors, 
perpendicular to this mirror plane. Only by using three 
different mirror planes, i.e. three different orientations 
of the mirror plane m, is there the possibility of uniquely 
determining the translation vectors. In addition, there 
is no general formulism available which relates the 
point group and orientation of and translation vectors 
between molecules of the crystal with the positions of 
the peaks of this translation function. 

It is the purpose of this paper to introduce and 
determine the properties of a new translation function 
which is a generalization of the translation function 
given above. This new translation function is 

t ~  

T(x, A)= IT P(x + u)P(x + Au)du (3) 

where A is an arbitrary rotation, and where the integra- 
tion is over the same volume U as in equation (2).* In 
the special case when A = m, this new translation func- 
tion becomes identical with equation (2), with the 
translation function given by Rossmann et al. (1964). 
When x = 0 and A is a proper rotation, equation (3) is 
identical with equation (1), the rotation function given 
by Rossmann & Blow (1962). 

In the following section a method is formulated to 
determine the values of x and A corresponding to all 
peaks of the translation function T(x,A) by deter- 
mining the relationship between these values of x and 
A, and the point group and orientation of and transla- 
tion vectors between the molecules in the crystal. We 
shall also determine the behaviour of T(x,A) in the 
neighborhood of its peaks and consequently show that 
from a translation function T(x,A) for one specific 
value of A, when A = CN, N 4 2, an N-fold rotation- 
inversion, one can determine all components of the 
peaks. 

* Electron microscopy is helpful in determining the volume U in 
the case of 'spherical viruses', e.g. satellite tobacco necrosis virus 
(STNV) (Fridborg et  al., 1965). The effect of the choice of the volume 
U on the resolution of rotation function peaks, in the case of STNV, 
has been discussed by Lentz & Strandberg (1974). 

In the third step of the molecular replacement method, the phase 
problem, not discussed in this paper, the related problem of deter- 
mining the volume to be used in real space averaging of the electron 
density (Bricogne, 1974; Argos, Ford & Rossmann, 1975) has been 
named the 'Molecular Envelope Problem' (Bricogne, 1976). The 
choice of this volume, in the phasing of lobster GPD, as a sphere, 
has been shown to be inadequate (Argos et  al., 1975). 

The purpose of this paper is to discuss not the phase problem but 
the translation problem, and introduce the new translation function, 
equation (3), which is a generalization of equations (1) and (2). As 
the same volume is used in both translation functions, equations (2) 
and (3), and as the usefulness of Rossmann & Blow's (1962) rotation 
function, equation (1), and Rossmann et al.'s (1964) translation func- 
tion, equation (2), has been shown, in spite of the problem of 
choosing the volume U, we shall assume that the volume U has 
somehow been defined. 

In the final section we consider the case of trigonal 
crystalline bovine liver catalase. Using the formulism 
of the previous section, we determine the dependence 
of the positions of the peaks of the translation function 
T(x, C4), for a specific fourfold rotation-inversion, on 
the point group and orientation of and translation 
vectors between the bovine liver catalase molecules. 
It is then shown how one can determine the positions 
of the molecules from the positions of the peaks of this 
translation function. In addition, it is shown that this 
translation function can be used as a 'test function' to 
determine uniquely which of the two solutions of the 
rotation problem is the point group of the bovine liver 
catalase molecules. 

The translation function T(x,A) 

As the translation function T(x,A), equation (3), is 
defined in terms of the Patterson function, we begin 
by reviewing some properties of the Patterson function: 
The Patterson function of a crystal made up of mole- 
cules can be written in the form 

P(r)= ~ Prkt(r) (4) 
jkt  

wherej and k index the molecules in the unit cell, and t 
the translations of the space group of the crystal. 
Prr0(r) represents the contribution to the Patterson 
function of the 'self-vectors' (intramolecular vectors or 
self-Patterson) of the jth molecule, and Prkt(r), the 
'cross-vectors' (intermolecular vectors or cross-Patter- 
son) between the jth molecule in the first unit cell and 
the kth molecule in the tth unit cell. 

We will denote by Ark the translation vector between 
the positions of thejth and kth molecule in the unit cell. 
Substituting r = Ark + t + u we can rewrite the contribu- 
tion of the ( jk t) th  cross-vectors as Prkt (Ark+t+u)  
which we then interpret as a function of the vector 
variable u whose origin is at r = Ajk + t. We will say that 
the (jkt)th cross-vectors are centred at r = Ark + t  and, 
since the molecules are of finite dimension, localized 
within a volume U about r=Ark+t .  The Patterson 
function can thus be considered as a superposition of 
overlapping arrays of self-vectors and cross-vectors 
centred at positions r = Ark + t. 

The translation function T(x, A), equation (3), is an 
overlap integral of a volume U of the Patterson centred 
at x, i.e. P(x + u) where u is restricted to be within the 
volume U, and a rotated image of this same volume. 
The translation function T(x,A) is non-zero if all or 
part of this volume is identical with its rotated image. 
This volume of the Patterson function may intersect 
one or more of the arrays of cross-vectors. Therefore, 
the non-zero values of the T(x,A) are associated with 
either the transformation of one array of cross-vectors 
into itself, or into a second array of cross-vectors. 
Relative maxima of the translation function T(x,A) 
considered as a function of x, for constant A, will be 
called 'peaks' of the translation function. Peaks then 
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correspond to the case where all or part of a volume U 
of the Patterson function is identical with its rotated 
image and where, at the same time, its intersection 
with an array or arrays of cross-vectors, as a function 
of x, is maximum.  

We shall now determine the relat ionship between the 
values of x and A corresponding to all peaks of the 
translat ion function T(x,A) and the point group and 
orientat ion of and translat ion vectors between mole- 
cules in the crystal: Consider  all pairs of arrays of cross- 
v e c t o r s  Pjkt(r) and Pj,k,c(r). Necessary and sufficient 
condit ions that the t ranslat ion function T(x,A) has 
non-zero values associated with the t ransformation of 
Pjk,(r) into P;k,r(r) are as follows: 

(1) the rotation A is such that 

Pjkt(Ajk + t + A - lu) = Pj'k'c(Aj'k' + t' + U), (5) 

that is, the array of cross-vectors Pj'k'c(r) is identical 
with the array of cross-vectors Pjkt(r) after the latter 
has been rotated about  its centre, at r =  Ajk + t, by the 
rotation A. 

(2) The rotation A and position x are such that 

A(Ajk + t - x) = Aj,k, + t' -- x, (6) 

that is, under the rotation A about  x, the centre of the 
array of cross-vectors Pjkt(r) is t ransformed into the 
centre of the array of cross-vectors Pi'k'v(r). 

(3) The vector ½y, where y = Ajk + t - - x  is within the 
volume U. 

The first two of these condit ions demand  that the 
array of cross-vectors Pjkt(r) is t ransformed by the 
rotation A about  x into the array of cross-vectors 
Pj,k,c(r), the third condition, that the volume U of the 
Patterson function centred at x intersects both arrays 
of cross-vectors. 

In determining the peaks of the translat ion function 
from the above conditions, we limit ourselves to the 
case where the molecular  positions in the first unit cell 
are general positions and constitute one set of equiv- 
alent positions with respect to the space group of the 
crystal. The general case is discussed in Appendix I. 

Let Ri denote a rotation of the space group of the 
crystal, and P the point group of the molecule at posi- 
tion rl in the unit cell. The position ri of the ith mole- 
cule in the unit cell is then given by r/=R~r~ +z(R~), 
where ~(Ri) is the non-primit ive translat ion associated 
with R~. We denote by {R(jk)} the set of all rotations 
which rotate the molecule at rj into the orientation of 
the molecule at rk. It has been shown (Litvin, 1975) that: 

{R( jk ) }=  { R k P R ;  i} (7) 

where {RkPR ;- 1 } denotes the set of all rotations of the 
form R k P R ;  f where P is an element of I a. 

A set of rotations which satisfies the first condition, 
equat ion (5), for two arrays of cross-vectors Pjkt(r) and 
Pj,k,,,(r) will be denoted by 

{A( jk j 'k ' ) }=[{R( j j ' ) }  ~ {R(kk')}] 
+ i [ {R( j k ' ) }  n {R(kj')}] (8) 

where the symbol  ~ means  'intersection', i.e. {R(jj')} n 
{R(kk')} means ' those rotations contained in both the 
sets of rotations {R(jj')} and {R(kk')}'. 

We shall assume that there are no other rotations 
which satisfy this condition.* If the set of rotations 
{A(jkj'k')} is empty, then the two arrays of cross- 
vectors Pjkt(r) and Pj,k,,,(r) are not congruent. 

If A is a rotation contained in {A(jkj'k')} then the 
translat ion function T(x,A) will be non-zero for those 
values x which satisfy the second condition, equation 
(6). The value of x is given by 

x = Ajk + t + y (9) 

where the vector y must  satisfy the equation:  

y - Ay  -- A j, k, - Ajk -k- t' -- t. (10) 

If there is no solution to equation (10), or if the vector 
y does not satisfy the third condition, then the transla- 
tion function T(x,A) for this rotation A, will be zero. 

We distinguish between three cases with respect to 
the rotation A: 

(1) A -- CN: If A is a N-fold proper rotation, N 4= 1, a 
solution of equat ion (10) exists if and only if the com- 
ponent of the v e c t o r  A j, k , -  Ajk + t ' - - t  parallel to the 
rotation axis of CN is zero. If so, then the t ranslat ion 
function T(x, CN) is non-zero for x - -  Ajk d- t d- y± + y ,  
where y± is the vector perpendicular  to the rotation 
axis of CN which is determined from equation (10), and 
y, is an arbi t rary vector parallel to the rotation axis of 
CN. Because of the arbitrariness ofyll, l imited of course 
by condit ion (3), the translat ion function T(x, CN) 
will be non-zero for those values of x along a line 
passing through the point x - -  Ajk Jr- t -k- Yl and parallel 
to the rotation axis of CN. 

The m a x i m u m  value of the translat ion function 
T(x, CN) along this line of non-zero values is at x =  
Ajk + t + y±, i.e. when y II -- 0. To exemplify this, consider 
the case where both the arrays of cross-vectors are 
taken as Pjko(r) and assume that {A(jkjk)} contains the 
proper rotation CN, N # l, i.e. Pjko(r) is invariant  under 
the rotation CN about  its centre at r--Ajk. In this case 
equat ion (10) becomes y - C N y = 0  and consequently 
yz--0.  The translat ion function is therefore non-zero 
for x=Ajk+Yl l  , see equation (9), where Y lp is an 
arbi trary vector. When y II = 0 the centre of the volume 
U of the Patterson is centred at x--Ajk and the inter- 

* It is easily shown that rotations contained in equation (8) 
satisfy equation (5), and we havc assumed that there are no additional 
rotations with this property. Such an assumption is basic to this 
analysis of the translation function and no justification will be given 
other than to point out similar assumptions which have been 
implicitly used in the analysis of the translation function T(x,m) 
(Rossmann et al., 1964) and of the rotation function (Litvin, 1975). 
In the former, using the notation of this paper, it was shown that 
T(x,m) contains a peak if for some j and k, {A(jkjk)} contains an 
element A =m; it was implicitly assumed that T(x,m) contains no 
other peaks. In the latter, it was stated that if P is the symmetry 
point group of a molecule, then the symmetry point group of the 
corresponding array of self-vectors is Px I. That I ax l  is an 
invariance group of the array of self-vectors is easily shown; that 
I a x I is the symmetry group was assumed. 
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section of this volume and the array of cross-vectors 
Pjko(r), also centred at x = Ark, is maximum. Therefore 
the translation function T(x, CN) has a peak at x = ASk, 
when Y ll =0, and decreases in value when x--Ark + Y ll 
as the intersection of the volume U of the Patterson 
and the array of cross-vectors Pjko(r) decreases. 

Consequently, in general, there is a peak of the 
translation function T(x, CN) at x = Ark + t + y± and in 
addition the translation function is non-zero for those 
values of x along a line passing through the peak and 
parallel to the rotation axis of CN. We shall say that 
T(x, CN) has a peak at x = Ajk-k- t-q- y.  and 'streaking' 
of this peak in the direction of the rotation axis of CN. 

(2) A = m: This is the case of the translation function, 
equation (1), used by Rossmann et al. (1964). If A is a 
mirror plane, a solution of (10) exists if and only if the 
component of the v e c t o r  At, k , - A j k - t - t ' - t  parallel to 
the reflexion plane is zero. If so, then the translation 
function T(x,m) is non-zero for x = A j k + t + y ± + y ,  

"x 

Fig. 1. Model of crystal of space group P121 (C~) with two molecules 
in the unit cell. The point group of the molecule at the general 
position rl =(x,0,z) is 2xr2xy2z [D(2:'r'~*'z)]. Only four atoms of 
each molecule are shown explicitly, and only the molecules whose 
Z component is ___ z are depicted. Atoms of a molecule lying above 
and below a plane parallel to the crystallographic XY plane and 
passing through the molecule's centre are denoted by C) and x 
respectively. 

Fig. 2. Patterson function of the model crystal given in Fig. 1. Only 
the arrays of self-vectors and cross-vectors related to the molecules 
depicted in Fig. 1 are shown. The self-vectors and cross-vectors 
related to the atoms explicitly shown in Fig. 1, above, on, and 
below planes parallel to the crystallographic X Y plane and 
passing through the centres of the arrays of self-vectors and cross- 
vectors, are denoted by O, e ,  and x,  respectively. The centres of 
the arrays are also indicated. 

where y±, a vector perpendicular to the mirror plane, 
is determined from equation (10), and Yll is an arbitrary 
vector parallel to the mirror plane m. The translation 
function T(x, m) has a peak at x = Ark + t + Y., i.e. when 
Yll--0, and is non-zero for values of x on a plane 
passing through this peak and parallel to the reflexion 
plane m. We shall say that there is a peak of the transla- 
tion function T(x, m) at x = Ark + t + y± and 'smearing' 
of this peak in a plane parallel to m.* It is the smearing 
of the peaks which, as pointed out by Rossmann 
(1973), makes it possible in practice only to determine 
the component of the peaks x = Ark + t + y .  in the direc- 
tion perpendicular to the reflexion plane m=C2,  i.e. 
parallel to the axis of the twofold rotation C2. 

(3) A = CN, N 52" If A is an N-fold rotation-inver- 
sion, with N ~ 2, then the translation function T(x, CN) 
is non-zero for x = A j k + t + y ,  where y is uniquely 
determined from equation (10). In this case, T(x, CN) 
is non-zero at x = A j k + t + y ,  and, because of the 
uniqueness of the solution of equation (10), zero in the 
neighbourhood of this point. Consequently T(x, CN) 
has a peak at x = Ark + t + y and there is no streaking 
nor smearing of the peak. 

The strongest peaks of the translation function 
T(x,A) correspond to the case where j = j '  and k =k' ,  
for rotations A in {A(jkjk)}, and are at x = Ajk +t.  This 
follows from the fact that at x = Ajk + t the volume U 
coincides with the array of cross-vectors Pjkt(r), and 
that these rotations leave the array of cross-vectors 
Pjk,(r) invariant. We shall refer to these peaks at 
x =Ajk + t  as the dominating peaks of the translation 
function. 

By using equations (8), (9), and (10), for all possible 
values of the indices j, k, j', and k' one determines the 
position of all peaks of the translation function 
T(x,A), and the relationship between the positions of 
these peaks and the point group and orientation of and 
translation vectors between molecules in the crystal. 
By comparing the positions of peaks of the translation 
function T(x,A) predicted by the above method with 
the positions of peaks of T(x,A) calculated from ex- 
perimental data, one can obtain information on the 
translation vectors. However, in determining the posi- 
tions of the peaks, problems arise in the cases where 
A = CN and m, the latter corresponding to the transla- 
tion function used by Rossmann et al. (1964), because 
of the streaking or smearing of the peaks. An advantage 
of the translation function introduced in this paper 
over the one used by Rossmann et al. (1964), is that if 
there are peaks of the translation function T(x, CN), 
N4:2, these peaks are neither streaked nor smeared. 

* The term 'streaking', instead of 'smearing', has been used to 
describe the behaviour of the translation function T(x,m) in the 
neighborhood of its peaks (e.g. Blow, Rossmann & Jeffers, 1964). 
However, this author believes that the term 'smearing' more 
adequately describes the two-dimensional arbitrariness of the 
solutions of equation (10) in this case where A = m, and reserves the 
term 'streaking' for the case where A = CN, N ~ 1, where there is a one- 
dimensional arbitrariness of the solutions of equation (10). 

AC 33A-5 
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Finally, we would like to point out that in the paper 
by Rossmann et al. (1964) where the translation func- 
tion T(x, m), equation (2), was introduced, the transla- 
tion function T(x,A), equation (3), was implicitly 
considered, but rejected. The rejection of T(x,A) was 
due to the lack of a general method, as the one presented 
in this paper, to predict all peaks of a translation func- 
tion. The reasoning which lend to their erroneous 
rejection of the translation function T(x,A), is con- 
sidered in Appendix II. 

As a simple example of the above, which shows the 
advantages of using this new translation function, 
consider a crystal of the space group P121 (C 1) with 
two molecules in the unit cell. In a Cartesian coor- 
dinate system this space group is generated by 
(lla,0,0), (ll0,b,0), (llc,0,e), and (2yl0,0,0) where 
a, b, c, and e are lattice parameters. The positions of 
the molecules in the unit cell will be taken as the 
general positions r l=(x ,0 ,z)  and r2=2yr~=(~,0,z), 
and we assume that the point group of the molecule at 
rl is 2xy2xy2= [D (xy'xy'z)] (n.b.: 2xy denotes a rotation 
of 180 ° about an axis in the [1,1,0] direction). A 
schematic representation of this crystal is given in 
Fig. 1, and its Patterson function in Fig. 2. In Fig. 1, 
we show explicitly only four atoms of each molecule 
as a pedagogical aid for visualizing the point group 
and orientation of the molecules. We emphasize that 
this and the molecular envelope also depicted are 
visual aids only, and that, as shown above, the posi- 
tions of the peaks of the translation function depend 
only on the point group and orientation of and transla- 
tion vectors between the molecules. 

In this example R I = I ,  R2=2r,  P=2xy2zy2z 
[D~2~Y'~Y'z)], and the sets of rotations {R(jk)} defined 
by (7) are tabulated in Table 1. The sets of rotations 
{A(jk, j'k')} determined from equation (8) and Table 1, 
are tabulated in Table 2. Finally, the values of x and 
A, where x:~ 0, of peaks of the translation function 
T(x, A) corresponding to the arrays of cross-vectors of 
the Patterson function in Fig. 2, are given in Table 3. 

From Table 3 one finds that from the peaks of the 
translation function T(x,74z), because there is neither 
streaking nor smearing of these peaks, one can deter- 
mine A~2 and A2 ~. Note also, see Fig. 2, that while the 
arrays of cross-vectors do overlap, this overlapping 
will not affect the positions of the peaks. One can also 
determine, for example, A12 from any two of the 
translation functions T(X,2z), T(x,2~y)and T(x,2~y) 
since each of these has a peak which is streaked at 
X = Ajk. 

Table 2. The sets of rotations 

{A(jk,j 'k')}=[{R(ff)} n {R(kk')}] 
+-l[{R(jk')} c~ {R(kj')}] 

for j ,k , j ' ,k '= 1,2 

The sets of rotations {R(jk)} are given in Table 1. 

jk j'k' 
11 11 
11 12 
11 21 
11 22 
12 11 
12 12 
12 21 
12 22 
21 11 
21 12 
21 21 
21 22 
22 11 
22 12 
22 21 
22 22 

[A(jk,j'k')] = [{R0j')} c~ {R(kk')}] +i[{R(jk')} n {R(kj')}] 
1 2zy 2xy 2= m~y mry m~ T 

2x 2 r 4~ 43 mx m,. 7~ 7~ 

1 2-zy 2~y 2~ rn~ mr 7~z 7~3 
2~ 2 r 4~ 43 mxy mzr m~ i 

2~ 2y 4= 43 mxr mr r m_= i 
1 2~y 2zr 2= m~ m r 4~ gs 

2~ 2 r 4= 4 3 mx m r 7~= 7~3 

1 2~y 2~, 2z mxr mrs, m= i 

Table 3. Peaks of the translation function T(x, A) of the 
model crystal shown in Fig. 1 tabulated according to the 

rotation A associated with the peak 
A 
2= 
2xy 
2xr 
2~ 
4= 
43 
mx 
my 
1 
4z 

X 
A21, d21 +tx, ½t r, A21 +½ty, A 12 -~-tx-J-½ty 
A21 , .412 +tx 
d21, dl2 +tx 
½ty ~( _ 
~(1,1,0), 1,1,0)+t~ 
~(1,1,0), ~ ( -  1,1,0) + t~ 
AE1, A12+tx 

1 A21, A 12 + t . .  7tr, A2x +½tr, A 12 + t~ +½tr 
½t~, ~(t~ + tr) 
A21, A 12 +tx, ~(1,1,0), ~( - 1,1,0) + tx 
A2~ +~(1,1,0), A21 +~( - 1,1,0) 
A 12 +t~+~(1,1,0), A 12 + tx + ~ ( -  1,1,0) 
A2~, A 12 +t~, ~(1,1,0), ~( - 1,1,0)+ t~ 
A2, +~(1,1,0),/121 + ~ ( -  1,1,0) 
d ~2 +t~ +~(1,1,0), A 12 +t~ + ~ ( -  1,1,0) 

By using only the translation function T(x,m) used 
by Rossmann et al. (1964), one cannot uniquely deter- 
mine the translation vector A12 or A21. From T(x,m~) 
and T(x, my), because of the smearing of the peaks, one 
can determine only the x and y components, respec- 
tively, of A 12 and A 21. 

Lastly, since in this simple example, A~2=2r1= 
-2r2 ,  having determined A12, one has also deter- 
mined the positions of the molecules in the unit cell. 

Table 1. The sets of rotations {R( jk)}={RkPRf '} ,  
j , k = l , 2 ,  tabulated for P=2xy2~r2 z [Dr2 xr'~r'z)] and 

R I = I and R 2 = 2 r 
j k {RUk)} 
1 1 E 2xy 2~y 2= 
1 2 2., 2y 4= 43 
2 1 2x 2y 4= 43 
2 2 E 2~y 2xy 2z 

Bovine liver catalase 

Trigonal crystalline bovine liver catalase is a crystal 
with space-group symmetry P3121 (D~) and the posi- 
tions of the molecules in the unit cell constitute a 
single set of equivalent positions. X-ray diffraction 
studies have shown that this catalase molecule has at 
least one twofold axis of symmetry (Glauser & Ross- 
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mann, 1966; Gurskaya, Lubanova & Vainshtein, 
1971). Electron microscopy studies indicate that the 
bovine liver catalase molecule consists of four sub- 
units and has the point group 222 (D2) (Barynin & 
Vainshtein, 1971). A rotation function study of 
trigonal crystalline bovine liver catalase was performed 
by Eventoff & Gurskaya (1975) and the solution of the 
rotation function problem (Litvin, 1975) has shown 
that the point group of the bovine liver catalase mole- 
cule is either 4 (C4) or 222 (D2). 

In this section, using the translation function T(x, A), 
equation (3), and the method to determine the peaks of 

~.~ t 

1̂.1 

e. 

Fig. 3. The orientation of the generators tl,t2,t3 of the primitive 
translations of the trigonal space group P3~21 (D 4) is shown with 
respect to the Xn  and Yn axes of the space group's hexagonal unit 
cell. 

YH 

[H 

Fig. 4. The hexagonal coordinate system (Xn, Yn, Zn) of trigonal 
crystalline bovine liver catalase is shown relative to the Cartesian 
coordinate system (X, Y,Z) in which the rotations associated with 
peaks of the translation function are defined. 

this translation function derived in the previous sec- 
tion, we will predict the positions of peaks of a transla- 
tion function which can be used to determine which 
of the two point groups is the point group of the 
bovine liver catalase molecule. We will then show how 
one can determine, from the positions of these peaks, 
the positions of the bovine liver catalase molecules in 
the unit cell of this crystal. 

In Fig. 3 we show the generators of the primitive 
translations of the trigonal lattice of P3121 (D34) with 
respect to a hexagonal coordinate system (XH, Yn, Zn). 
These generators, denoted by tl, t2 and t 3, given in 
terms of this hexagonal coordinate system a r e  t l  = 
2 1 1 1 1 1 7a,7a, Tc), and t 3 ( ½a, 2 1 (Ta, Ta,7c), t2=(  . . . .  7a,7c), 

where a and c are the lattice parameters of the hex- 
agonal unit cell. The positions of the six molecules in 
the unit cell will be denoted by 

r 1 r4 = 2xn YH F 1 

r e = 32/_/r i +2x r5 = 2xnrl +2~ (11) 

r3 = 3znr~ +'c r 6 = 2rnr~ + 

where z = (0, 0, ½c). The rotations A of the translation 
function T(x,A) will be given, for simplicity of nota- 
tion, in a Cartesian coordinate system (X, Y,,Z) whose 
orientation with respect to the above hexagonal coor- 
dinate system is shown in Fig. 4. 

From the solution of the rotation function problem 
for trigonal crystalline bovine liver catalase (Litvin, 
1975) the point group P of the molecule at r1 was 
determined to be either 4x [C~ x)] or 2x2r2z [D(zx'r'z)]. 

In Table 4 we list the sets of rotations {A(jk, jk)}, 
j # k, j, k = 1,2,..., 6, defined in equation (8), for each of 
the two point groups. These rotations are associated 
with the 'dominating' peaks of the translation function 
T(x,A), where x-¢ t. As seen from Table 4, there are 
such dominating peaks in, for example, the translation 
function T(x,74x) in the case where P = 222 (D2) while 
none in the case where P = 4  (C4). Consequently, we 
can use the translation function T(x,74x) as a test 
function to determine which of the two point groups 

Table 4. The sets of rotations {A(jk,jk)} tabulated for the models of trigonal crystalline bovine liver catalase for the 
two cases where the point group of the molecules is 222 (D2) and 4 (C4) 

jk  P = D~ ~'" y' ~ jk 

12 1 2,, 2y 2z 12 1 T2,`z 
13 1 2,, 2y 2~ 13 1 T2,`y 
14 1 2,` 2y 2z+T[2~y 4z 43 2~_y] 14 1 12~y 
15 1 2x 2 r 2z + T[27~ 2rz 4,, 43] 15 1 4x 
16 1 2,` 2r 2z+112~ 2,`z 4 v 4r] 16 1 1_-2~ r 
23 1 2,` 2y 2z 23 1 12y, 
24 1 2,` 2r 2z+T[2yz 2r~ 4x 43 ] 24 1 12yz 
25 1 2~ 2y 2,+112~z 2= 4 v 4v s] 25 1 i2iz 
26 1 2x 2y 2z+i[2~r 2,`r 4~ 4~] 26 1 4z 
34 1 2,` 2 r 2z+_i[2~z 2= 4y 43 ] 34 1 4 r 
35 1 2,` 2y 2~+i[2~r 2,`y 4~ 4~] 35 1 i2~r 
36 1 2,, 2y 2=+T[Zyz 2yz 4,` 43 ] 36 1 1_-2~-, 
45 1 2,` 2y 2, 45 1 12,`r 
46 1 2x 2r 2, 46 1 12y, 
56 1 2~ 2r 2, 56 1 12,`= 

F' = C k  ,`~ 

2~ 4~a+i[2, 2, 2~z 2,,] 

2z 4z3+i[2~ 2, 2~, 
2y 4ya+i[2~ 2z 2~= 

2xy] 
2=] 

AC 33A-5' 
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is the point group of the bovine liver catalase mole- 
cules. While other choices of the rotation A could have 
been taken to define a test function T(x,A), we have 
taken A=ECx since the peaks of T(x,Z~x) are neither 
streaked nor smeared. 

To calculate all peaks of the translation function 
T(x, 4x) one first determines the indicesjk, fk '  for which 
{A(jk,j'k')} contains the rotation 74x. The positions x 
of the peaks of T(x,4x) are calculated from equations 
(9) and (10). The translation vectors can be written in 
terms of the molecular position rl and the lattice 
parameters of the crystal. Therefore, the coordinates 
of the positions of the peaks can be calculated in terms 
of the unknown hexagonal coordinates (xo, Yo, Zo) of 
the molecular position rl, and the parameters c/3 and 
a/3, where a and c are the lattice parameters of the 
hexagonal unit cell. That is, each of the three coor- 
dinates of a peak can be given by five numbers Ni, 
i=  1,2,...,5, and its numerical value by xoN1 +yoN2 + 
zoN 3 -+- cN4/3 + aN s/3. 

In Figs. 5 and 6, for P = 222 (D2) and 4 (C¢), respec- 
tively, we have plotted the peaks of the translation 
function T(x, 74x) which lie on a subsection of the plane 
defined by the Zn axis and the line Yn =2Xn.  That 
these peaks lie on this plane is not dependent on the 
numerical values of Xo, yo, Zo, c and a. To represent 
the results of this calculation pictorally, i.e. to obtain 
numerical values of the positions of the peaks on this 
plane, we have used the values Xo= 110-84 ,~, Yo= 
24"24 ]k, z0 = 11"87 A (Barynin & Vainshtein, 1971) and 
a =  173-3 ,~ and c=237.4 ,~ (Longley, 1967; Rossmann 
& Labaw, 1967; Vainshtein, Barynin, Gurskaya & 
Mikitin, 1967) to calculate the positions x of these 
peaks and the magnitude of y corresponding to each 
peak. We have plotted all positions x whose corre- 
sponding vector y is of magnitude of less than 200 .~, 
i.e. taking the radius of the volume U as 100 A. 

Comparing Figs. 5 and 6, one finds that all peaks of 
Fig. 6, where P = 4 (C¢) are contained in Fig. 5, where 
P = 2 2 2  (O2). However, the translation function for 
P = 222 (D2) contains many more peaks. Consequently, 
by calculating from experimental data the translation 
function T(x, Tqx) for x lying on this special plane, one 
can determine which of the point groups, 222 (D2) o r  
4 (Co.), is the point group of the bovine liver catalase 
molecules. 

To determine the coordinates (xo, Yo, Zo) of the 
molecular position rl, we first consider the case where 
P = 2 2 2  (D2). One finds that all peaks, in Fig. 5, lie 
along seven lines parallel to the Zt~ axis. We denote the 
intercepts of these lines with the Xu axis, the coordinate 
axis perpendicular to Z~/lying in this plane, as X'n(i), 
i=1,2, . . . ,7 ,  and list them in Table 5. One can 
distinguish these seven intercepts by noting that in 
general 

X~r(2) + X~(6) = X)(7) 

X~r(3) + Xh(5) = Xn(7) 

Xn(2) + X~(3) = Xn(4) 

and that the dominating peaks line on the lines which 
intersect the Xu axis at XH(2), X~(4), and X)(5). One 
can determine xo and )_,o from X~(3) and XH(6), since, 
see Table 5, X'n(3)=l/3Yo and X'n(6)=l/3Xo-l/3a/3. 
The component Zo of r l can be determined from the 
Zn component of the dominating peak on the line 
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Fig. 5. Peaks of the translation function T(x,4x) lying on the ZnX'n 
plane, where the Xu axis is defined along the line 2XH = Yn, for 
the model of trigonal crystalline bovine liver catalase where the 
point group of the molecules is 222 (D2). Dominat ing peaks are 
denoted by open circles. 
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Fig. 6. Peaks of the translation function T(x,74x) lying on the ZnX'n 
plane for the model of trigonal crystalline bovine liver catalase 
where the point group of the molecules is 4 (C4). Dominat ing 
peaks are denoted by open circles. 
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whose intercept is XH(2), since the ZH component of 
this peak is equal to 2Zo. Knowing the components of 
r~, one determines the remaining molecular positions 
in the unit cell using equation (1 1). 

Table 5. The X'n coordinate of the peaks of the transla- 
tion function shown in Fig. 5, given by the expression 
xoNx + yoN2 + zoN3 + cN4/3 + aNs/3, listed in terms of 

the values of the coefficients Ni, i= 1,2,..,5 
XH 

N1 Nz N 3 N,  N5 
x~,(1) o o o o o 
x~(2) -V~ o o o 2V~ 

o o o 
Xn(4) - V 3  0 0 2 
xH(5) o - o o 
XH(6) V3 0 0 0 - ~  
XH(7) 0 0 0 0 V3 

In the case where P = 4  (C4), one can determine 
from the peaks of the translation function shown in 
Fig. 6 only Xo and Yo; XH(3)=V3yo, and the ZH 
component of the higher peak on the X'n(s) line is 
-]/3yo/2+2Zo. One cannot determine Xo from the 
positions of the peaks in Fig. 6, since the numerical 
values of the positions of these peaks are independent 
ofxo. 

To determine Xo, one could plot the translation func- 
tion T(x,74x) in the volume defined by O<Xn/a< 1, 
0 < YH/a--< 1, and - 0-5 < ZH/a < 0"5. In Fig. 6 we show 
the positions of the strongest peaks, excluding those at 

- 2  

- .3 

-.4 
- 5  

z- I: 
¢.5 

.,£'.\ 
0 

Fig. 7. Highest peaks of the translation function T(x,$,x) in the 
volume defined by O<Xn/a< 1, 0< YH/a< 1, and -0"5<Zn/c< 
0"5, for the model of trigonal crystalline bovine liver catalase 
where the point group of the molecules is 4 (C4). The Zn com- 
ponents of peaks where XH> YH are negative, where XH< Yn, 
positive. 

x = t. These peaks lie in six planes perpendicular to the 
ZH axis, and the intercepts of these planes with the ZH 
axis, denoted by Zn(i), i=  1,2,..., 6, are listed in Table 6. 
By determining, for example, Zn(1) one can determine 
Xo, since ZH(1) = --VgXo/2+]/3yo/2--Zo--C/3+ 
~V3/2)a, assuming that Yo and Zo have been pre- 
viously determined from Fig. 7. 

Table 6. The Z H coordinate of the peaks of the transla- 
tion function shown in Fig. 7, given by the expression 
xoN1 + yoN2 + zoN3 + cN4/3 + ansi3, listed in terms of 

the values of the coefficients Ni, i= 1,2,..,5 
In the right-hand column, the Zn coordinate of ZH(i) is given in 
terms of the ZH coordinate of ZH(1) and lattice parameter c of the 
hexagonal unit cell. 

ZH(1) -V'~ V~ -1  -1  :~V'~ 
gn(2) V~ - ] /~  1 -1  -~V~2 3 --ZH(I)--~C 
z.¢3/ - ~  ~ -1 o ~ z,,(l/+~-c 
Zn(4) ~ -V~ 1 o -~V'~ -- ZH(1)--½c 

Zn(5) -V~ V~ -1  1 ~V~ Zn(l)+~-c 
ZH(6) V'~ -V'~ 1 1 -~V~ - zn(1) 
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A P P E N D I X  I 

In the case of a crystal consisting of identical molecules 
where the positions of the molecules in the unit cell 
constitute q sets of equivalent positions, the rotations 
which rotate a molecule into the orientation of another 
molecule are determined as follows (Litvin, 1975): 
Let r~=R~r~ +~(R~) denote the position of the jth 
molecule in the ath set of equivalent positions, where 
(R~[x(R~)) is an element of the space group of the crystal• 
Let P denote the point group of the molecule at rl, 
and for ~=  1,2,...,q, R" a rotation which rotates the 
molecule at rl into the orientation of the molecule at 
r]. The set {R(aj, flk)} of rotations which rotate the 
molecule at r~ + t into the orientation of the molecule 
at rg + t' is given, in terms of P, R ", and R~, by [compare 
with equation (7)]: 

{ R(aj, ilk)} = { R~R~P(R~R~) - 1}. 

Peaks of the translation function at x = (r~ - r~) + t + y 
where y - A y = ( r ~ ; - r J ) - ( r ~ - r ~ ) + t ' - t  [compare 
with equations (9) and (10) respectively] are associated 
with rotations contained in the set of rotations 
{A(aj, ilk; a'j', fl'k')} given by [compare with equation 
(8)]: 
{A(aj, ilk; a'j', fl'k')}=[{R(aj, a'j')} c~ {R(flk, fl'k')}] 

+ i[{R(oO, fl'k')} ~ {R(flk, a~]')}]. 
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APPENDIX II 

The translation function T(x,m), equation (2), was 
introduced by Rossmann et al. (1964). In that same 
paper, the general translation function T(x, A), equa- 
tion (3), was implicitly considered' and rejected. We 
shall review here the derivative by Rossmann et al. in 
terms of the general theory of translation functions 
presented in this paper, and conclude that the erroneous 
rejection by these authors of the translation function 
T(x,A), equation (3), was due to an error in mathe- 
matical logic. 

In the terminology of this paper, Rossmann et al. 
(1964) restrict themselves to determining conditions on 
rotations A such that the translation function T(x, A) 
has a peak at x = Ajk. They consider only the array of 
cross-vectors Pjko(r) centred at r = Ajk , and consequent- 
ly were determining conditions that A is a rotation 
which leaves the array of cross-vectors Pjko(r) invariant. 
They derive the sufficient condition that if R is a rota- 
tion of 180 ° contained in {RUk)}, then A = .~-m.  This 
sufficient condition follows directly from the general 
theory presented in this paper: T(x,A) has a peak at 
x =  Ajk if A is a rotation contained in {A(jk, jk)}, where 
from equation (8): 

{A(jk, j k ) }=[{R( j j ) }  ~ {R(kk)}] 

+][{R(jk)} c~ {R(kj)}]. 

If R is a proper rotation contained in {R(jk)}, R - 1  is 
contained in {R(kj)} (Litvin, 1975), and consequently 
if R = R - i  (a rotation of 180 ° obviously satisfies this) 
then a rotation A = R  is contained in {A(jk, jk)}. 

Rossmann et al. (1964) then seem to interpret this 
sufficient condition as a necessary condition, conclude 
then that a rotation A not equal to m cannot leave the 
array of cross-vectors invariant, and subsequently 
reject the translation function T(x,A), A#m,  out of 
hand. Their erroneous interpretation of a sufficient 
condition as a necessary condition has led them to their 
erroneous conclusion. 
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