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A new class of groups is defined for describing the symmetry of atom arrangements in crystals with
structural distortions. The general structure of these new groups, which we name wreath groups, is
determined in a mathematically rigorous manner. Wreath groups are particularly suitable for describing
atom arrangements in crystals with periodic structural distortions. The effect of such wreath-group
symmetry on x-ray-diffraction patterns is briefly discussed. A new Bloch theorem, based on wreath-group
symmetry, is formulated for crystals with structural distortions. This' new Bloch theorem is applied to
determine the form and corresponding charge density of one-electron eigenfunctions in the nearly-free-
electron approximation for crystals with periodic structural distortions.

I. INTRODUCTION

Three-dimensional crystallographic space-group
symmetry has for a long time been considered the
main or fundamental characteristic of solid-state
systems.!”® From the theory of the three-dimen-
sional space groups follow important consequences
concerning the physical properties of crystals,
such as the Bloch theorem,* and one is able to pre-
dict such physical properties as energy degener-
acies,’ selection rules,® and characteristic x -ray-
diffraction patterns.” In recent years one has be-
come increasingly aware of the existence of solid-
state systems with long-range order whose sym-
metry is not a three-dimensional crystallographic
space group. Examples of such solid-state sys-
tems are y-Na,CO,,® NaNO,,® and K,Mo0,,' ionic
crystals with incommensurate periodic structural
distortions, (TTF),I,' and TaS,,”? TaSe,,"* and
TaTe,,'* layered transition-metal dichalcogenides
with periodic structural distortions. Physical
properties of such systems, as the characteristic
three-dimensional x-ray-diffraction pattern, can-
not be predicted nor understood using the theory of
the three-dimensional crystallographic space
groups.

One method of describing the symmetry of crys-
tals with structural distortions has been introduced
by de Wolff,'®> de Wolff,'5+'® and Janner and Jans-
sen!” describe a crystal with structural distortions
in a suitably defined higher than three-dimensional
space, the crystal with structural distortions being
a three-dimensional section of this higher than
three-dimensional space. The mathematical theory
of the symmetry groups of this higher than three-
dimensional space used to characterize crystals
with structural distortions, called superspace
groups, has been determined by Janner!® and Jans-
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sen,!®

The description of the symmetry of crystals with
structural distortions to be developed in this paper
is based on the use of a new class of symmetry
groups. The method of defining such new groups
is in turn based on the introduction of new types of
operators by coupling additional suitably defined
operators to the elements of three-dimensional
crystallographic space groups. Such an approach
to defining new groups has been used by Litvin®+?!
and Litvin and Opechowski®? in defining spin
groups. The additional operators coupled to ele-
ments of three-dimensional space groups intro-
duced in this paper give rise to new symmetry
groups whose mathematical structure is related to
the mathematical concept of wreath products.? 24
Consequently, these new groups have been named
wreath groups.

A similar approach to the introduction of new
groups of similiar mathematical structure, called
generalized color groups, has been used by Koptsik
and Kotzev,? and Koptsik.?® The generalized color
groups used to describe crystals with structural
distortions?®?” differ from the groups to be defined
in this paper in details of their mathematical
structure and in the type of additonal operators
coupled to elements of the three-dimensional crys-
tallographic space groups.

In Sec. II, after a brief review of terminology,
we introduce new types of operators by coupling
additional operators to elements of the three-di-
mensional crystallographic space groups to de-
scribe the symmetry of crystals with structural
distortions. New symmetry groups of crystals
with structural distortions, named wreath groups,
are then defined. The mathematical structure of
wreath groups is determined in Sec. III and the ef-
fect of such wreath-group symmetry on x-ray-dif-
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fraction patterns is briefly discussed in Sec. IV.
In Sec. V, a new Bloch theorem based on wreath-
group symmetry and applicable to crystals with
structural distortions is formulated. This Bloch
theorem is then applied to determine the form of
the one-electron eigenfunctions and corresponding
charge density in the nearly-free-electron approx-
imation for crystals with periodic structural dis-
tortions.

II. WREATH GROUPS OF CRYSTALS WITH
STRUCTURAL DISTORTIONS

We use the following notation and terminology®*:
E (3)x E,(1) is ‘Space-time,” the product space of
a three-dimensional Euclidean point space called
“space” and a one-dimensional Euclidean point
space called “time.” (T, ¢) is a point in space-time
in some coordinate system. &,(3)X &,(1) is the
Newton group, the direct product of the Euclidean
group &,(3) consisting of all proper and improper
rotations and all translations of E,(3), and the
Euclidean group &,(1) consisting of time inversion
and all time translations of E,(1). An element of
8,(3) will be denoted by F=(R|V) where R is a
three by three proper or improper rotation matrix
and V is a three by one column translation matrix.
An element of §,(1) is denoted by (A|7) where A
is an element of the time-inversion group A con-
sisting of the unit element £ =1 and time -inversion
E’'=-1, and 7 is any real number representing a
time translation.

A crystal is a subset C,(3) of points in E3), the
points being the positions at which atoms are lo-
cated. A crystal C,(3) is invariant under an ele-
ment F of §,(3), and F is said to be a symmetry
element of the crystal if, for each T of C,(3)

Fr=(R|V)I=RT+V,

is also a point of C,(3). The set of all such sym-
metry elements F constitutes a group F called the
symmetry group of the crystal. We shall restrict
the meaning of a “crystal C,(3)” in this paper to
that of a subset of points in E (3) whose symmetry
group is one of the 230 three-dimensional crystal-
lographic space groups.

Consider a subset C,(3)X E (1) of space-time. A
crystal with structural distortions shall be defined
here by a function D (¥, ) which maps points (¥, ¢)
of C,(3)X E,(1) to vectors D of a vector space V.
V" is a three-dimensional carrier space of the ir-
reducible representation

((R|¥),(A|7)) =D (R|¥)XT*(A|7)

of the Newton group, where D; (R |V)=R and
T*(A|7)=+1. The vector space V" _will be called
the “distortion space” and vectors D “distortions.”

D, ¢), for a specific T of C,(3) and specific ¢, is a
vector which represents the structural distortion
at time ¢ of the atom of the crystal C,(3) at T.

We shall restrict ourselves to the case of static
structural distortions, the invariance of the struc-
tural distortions ﬁ(F, t) under the time inversion
group A and all translations 7 being understood
without being explicitly stated. Consequently, we
shall write D (%) instead of D (T, £). Because we con-
sider only static structural distortions and because
C,(3) is a crystal, we shall consider only the sub-
group F of the Newton group, where F is the three-
dimensional crystallographic space group of C,(3).

Because the distortion space V™ is a carrier
space of the irreducible representation given
above, a transformation F of the crystal C,(3) im-
plies a transformation R of distortion space. Con-
sequently, a crystal C,(3) with structural distor-
tions D(F) is transformed by an element F of F into
the crystal C,(3) with structural distortions denoted
by [R||F]D®) and defined by

3
[RIIF]D'@) =) R, D'(F'F). (1)
=1

We interpret the symbol [R||F] as an operator on
the space of all structural distortions of a given
crystal C,(3). The action of the operator [R|| F] is
twofold: The transformation F on the right-hand
side of the double vertical bars acts only on the
space E(3) in which the crystal C,(3) is defined.
The transformation R on the left-hand side acts
only in the distortion space V~.

A crystal with structural distortions D(T) is in-
variant under an element F of F if

[RIFDF) =D, @)

and F is said to be a symmetry element of the
crystal C,(3) with structural distortions D). The
set of all such symmetry elements constitutes a
group G identical with or a subgroup of F, the
crystallographic symmetry group of the—crystal
C,3).

Such a definition of the symmetry group of a
crystal with structural distortions is in agreement
with the usual definition of the symmetry group of
a set of points in space: If the atomic positions of
the crystal with structural distortions are written
as T+D(¥), where T is a position of the undistorted
crystal C,(3) and D(¥) the structural distortion of
the atom at the position T, then F is a symmetry
element if for each position T +D(¥)

F{F+D@®} =(R|V{F+D @)}
=RF¥+V +RD(F)
=FF+RD(F)

is also an atomic position of the crystal with struc-
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tural distortions. Since T is an atomic position of
the crystal C,(3) and F is an element of the crys-
tallographic symmetry group of C,(3), FT is also
an atomic posmon of the crystal C,(3). Conse-
quently for F{r +D } to be an atomic position of
the crystal with structural distortions, one must
have RD(F)= D(FT), or rewritten in a modified
form, RD(F'F)=D(f). This last relationship fol-
lows immediately from Eqs. (1) and (2).

T he usefulness of mathematically representing
a crystal with structural distortions by a function
D (¥) defined on the undistorted crystal C,(3) and
its symmetry in terms of operators [R||F] acting
on the space of all structural distortions of the
crystal C,(3), is that a generalization of the con-
cept of the symmetry of crystals with structural
distortions can be formulated in analogy with gen-
eralizations of the concept of the symmetry of spin
arrangements.?°"2228 Such a generalization is
based on the introduction of new operators acting
on the space of all structural distortions on a given
crystal C(3).

We introduce two new types of operators on the
space of all structural distortions on a given crys-
tal C,(3). The first type of operator is denoted by
[E || F] where F is an element of the crystallo-
graphic symmetry group F of the crystal C,(3).
The action of an operator [E| F] is defined as fol-
lows A crystal C(3) with structural distortions
D(7) is transformed by an operator [E| F] into a
crystal C,(3) with structural distortions denoted by
[E”F]D(r ) and defined by

[E||FIDF) =D(F 7). (3)

The action of an operator [E||F] is only on the
space E(3) in which the crystal C((3) is defined.
The transformation £ on the left-hand side of the
double vertical bars is the identity rotation of the
distortion space V-. The set of all operators
[E||F], one for each element F of the symmetry
group F of the crystal C,(3), and with the product
of two such operators defined by

(ENIF][E|F,] = [E|F,F,],

constitutes a group isomorphic to F which we shall
denote by Q.

The second type of new operator on the space of
all structural distortions on a gwen crystal C(3)
is denoted by [V(r)llE] where V(T) is a fanction
which maps points T of the crystal C,(3) to distor-
tions of the distortion space V~. The action of this
second type of operator is defined as follows A
crystal C,(3) with structural distortions D(r) is
transformed by an operator [V(F)||E] into a crys-
tal C,(3) with structural distortions denoted by
[V(r )|EID(T) (the argument T of the function V&)
has been replaced by the symbol r’ to distinguish

it from the argument of D (F)) and defined by
(V@) |EJD@E =DF) +V (). )

Since both D(F) and V(F), for a specific ¥, are dis-
tortions, vectors of the same vector space V~, the
vector sum on the right-hand side of Eq. (4) is well
defined. The action of an operator [V (¥')| E] is
only on the displacement space V~, the symbol E
on the right-hand side of the double vertical bars
being the identity rotation of the space E (3) in
which the crystal C/(3) is defined. The actlon of an
operator [V(F)|E] is position dependent. That is,
the value of the function V(F’) added to the right-
hand side of Eq. (4) is dependent on the value of the
argument T of the structural distortion function

D (F) on the left-hand side of Eq. (4).

The set of all operators [V ()| E], for all func-
tions V (¥) which map points T of the crystal Cc,(3)
to vectors of the distortion space V~, can be pro-
moted to a group, which we denote by Q, by defin-
ing the product of two operators [V, (r)”E] and
[V,(®)||E] as

[Vl(r)"E][vz (F) "E] = [V1

An operator [V (F)|| E] is a symmetry element of
a crystal with structural distortions only if V(x") is
the identity function VE(?), the function which maps
all points T of the crystal C,(3) to the null vector of
the distortion space V~. This follows from Eq. (4)
which implies that [V(F)||E] is a symmetry opera-
tor only if D(F) +V (F)=D(F). This relationship is
satisfied by a function V(F)=0 for all T, i.e., if

V(%) is the identity function V (r)

Although an operator [V r)llE] with VF) #V ()
is never a symmetry of a crystal with structural
distortions, as we shall show below, a combination
of the two new types of operators, [V(F)|E] with
V(F) #V ,(F) defined in Eq. (4), and [E||F] defined
in Eq. (3) can be a symmetry element.

We conmder the set of all pairs [V T)| F] of op-
erators [V (F)|E] of the group , and operators
[E||F] of the group Q,, where F is the crystallo-
graphic symmetry group of the ¢ crystal C,(3). The
action of an operator pair [V(r)ﬂF] on a crystal
C,(3) with structural distortions D(F) transforms
the crystal into the crystal C,(3) with structural
distortions denoted by [V (F*) ”F]D(r) and defined by

[VE) | FIDE) =DF 7)) +V (). (5)

As in Eq. (4), the action of the operator pair de-
fined here is position dependent. It follows from
the definition of action, Eq. (5), that the product
of two operator pairs [V, (F)||F,] and [V,(F)| F,]
is given by

(V.| F, ][V, @) F,)
= [V,@) +V,(F{'F)|| F,F,] . (6)
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The set of all pairs [V(F)|| F] of operators
[V®)| E] of @, and operators [E || F] of Qj togeth-
er with the product defined in Eq. (6) constitutes

a group, the semidirect product Q, %, Q. of the
group Q, by the group Q5. The identity element is
[v E(r)"E] where VE(r) is the identity function and
E is the identity element of F. The inverse of an
element [V(T)|| F] is given by

[VOIF] = [-V(FD|F].

This semidirect product Q,x,Q is called the
“wreath product” V"x,Q . of the distortion space
V-~ considered as an Abelian group V- under vector
addition, and the group Q,.2*?® -

A crystal C,(3) with structural distortions D(r)
is said to be invariant under an operator [V (¥)|| F]
of the wreath product V"x,Q if

[VE)IFIDE) =D, (1)

for all T of the crystal C 4(3). We shall say in such
a case that [V ()| F] is a symmetry element of the
crystal C,(3) with structural distortions D (¥).

It follows from Eqgs. (1) and (2) that F is a crys-
tallographic symmetry element of a crystal with
structural distortions D (%) if and only if RD(F™'F)
=D(F). This implies that F is a crystallographic
symmetry element only if the magnitude of the dis-
tortions D(F~'F) and D (F) for all T are the same.
From Egs. (5) and (7) it follows that [V(¥)|| F] is a
symmetry element if

D(FT)+V () =D (). (8)

Consequently, unlike crystallographic symmetry
elements, for an operator [V(F)|| F] to be a sym-
metry element, it is not necessary for the distor-
tions D(F) and D(F™'T) to be of the same magnitude.

The set of all symmetry elements [V (¥)[| #] of a
crystal C,(3) with structural distortions D(F) con-
stitutes a group, the symmetry group of the crys-
tal with structural distortions. We now define a
wreath group: A subgroup of the wreath product
V'x,Qp will be called a “wreath group” if it is the
symmetry group of some crystal C,(3) with some
structural distortions D (F).

III. STRUCTURE OF WREATH GROUPS

In this section we discuss the structure of wreath
groups, subgroups of wreath products V' x,Q
which are symmetry groups of crystals with struc-
tural distortions. Wreath groups are those sub-
groups of wreath products V™%, consisting of a
set of pairs of operators [V(T)|| F], one such pair
for each element F of the crystallographic sym-
metry group F of the crystal C,(3). Wreath groups
are isomorplTic to F. One can first show that the
symmetry group of all crystals with structural

distortions are such subgroups, and then show that
every such subgroup is the symmetry group of a
crystal with some structural distortion. The proof
of these statements has been given in detail else-
where 28

For each element F of the crystallographic sym-
metry group F of the crystal C,(3) there is a single
function V (f), which we shall denote as V .(¥), such
that the operator pair [V ,(F)|| F] is a symmetry
element of the crystal C,(3) with structural distor-
tions D(F). For each F, the function V p(T) is de-
termined from Eq. (8), the condition that
[V,(®)| F] is a symmetry element of the crystal
C,(3) with structural distortions D(¥). This condi-
tion, rewritten in a form to determine the function
V(@) is

V() =D -D(F 7). 9)

Given a crystal C,(3) with structural distortions
and knowing only the distorted positions of the
atoms, there is a nonuniqueness in the choice of
the positions of the atoms in the undistorted crys-
tal C,(3). Thatis, a crystal C,(3) whose atom po-
sitions are at T and whose structural distortions
are given by D(F) can equally be considered as the
crystal C!(3) whose atom positions are at r’=r+a,
where 2 is a constant vector, and whose structural
distortions are given by D’(f’)=D(F) - 2. However,
the symmetry group of the crystal with structural
distortions is not dependent on such a nonunique-
ness in the choice of the atom positions of the
crystal C,(3). The symmetry group of the crystal
C,(3) with structural distortions D(¥) is the set of
all operator pairs [V ,(F)|| F] where V ,(F) is de-
fined in Eq. (9). The symmetry group of this same
crystal with structural distortions considered as
the crystal CZ(3) with structural distortions D’(¥’)
is the set of all operator pairs [V.(¥)|| F] where
V;(F’) is defined, again using Eq. (9), by

()= B(FE)

Consequently V,,.(r’) V (r) the value of the func-
tion V. (') at T'=T +2 is the same as the value of
the function VF(F) at *. The symmetry group of a
crystal with structural distortions is then not de-
pendent on the choice of the atom positions of the
crystal.

As an example of a crystal C,(3) with structural
distortions, we consider the incommensurate peri-
odic structural distortions in the 17 polymorph of
the layered transition-metal dichalcogenide TasS,.
A single layer of the layered transition metal di-
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chalcogenide consists of three sheets of atoms, a
top and bottom sheet of hexagonally packed chalco-
gen atoms, and a middle sheet of metal atoms.
The crystallographic symmetry group of a crystal
of Ta$, is the space group F=P3m1(D3,). A single
layer of the 1T polymorph is shown in Fig. 1.

A model of the structure of 17-TaS, in its in-
commensurate periodic structural distortion phase
has structural distortions given by*?

DE)=U@) +[3,]0@) + [32]0(), (10)
where

U@ =Asin@ F+a),
6 is a vector in the reciprocal x-axis direction, A

is parallel to 6, and « is a phase factor which
changes by 120° from one layer to the next. The

structural distortions of one layer, taking a =0, is

shown in Fig. 2.

The symmetry group of this crystal with struc-
tural distortions given by Eq. (10) is the subgroup
of the wreath product V™x,Q, with F=P3m1 (D3,),
a wreath group consisting of all operator pairs
[V.®) | F] with V () defined by Eq. (9), one such
pair for each element of the space group F.

IV. X-RAY DIFFRACTION

In this section we shall briefly consider the
characteristic x-ray-diffraction pattern of a crys-
tal with structural distortions, and in particular
the case of a crystal with periodic structural dis-
tortions.2°3° The intensity of the x-ray reflection
corresponding to a scattering vector K is propor-
tional to the modulus of the structure factor F(K),
which in the case of a crystal with structural dis-
tortions can be written as

F(l?)=;f,exp{iﬁ° [F,+D(F)]},

e \/\;,
'f\_vf

FIG. 1. Single layer of the 1T polymorph of the
layered transition-metal dichalcogenides. The layer
consists of three sheets of atoms, a top O sheet and
bottom (> sheet of charcogen atoms, and a center
sheet @ of metal atoms.
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where D(F) is the structural distortion of the atom
whose position in the crystal C,(3) is T.

We shall consider a crystal Cs(3) with structural
distortions whose symmetry group is a wreath
group, consisting of operator pairs [V .(F)|| F] one
such pair for each element F of the crystallo-
graphic symmetry group of the crystal C,(3). The
wreath group contams a subgroup T, cons15t1ng of
operator pairs [V, ]|f] one such pair for each
translation t of the translational subgroup 7 of F.
The structure factor can then be written as

FER)=Y_f, Y exp{ik-|
i t

where the summation is over all translations t of
T and positions r, of atoms in the primitive unit
cell of the crystal C,(3). Since [V,()|] is a sym-
metry element of the crystal with structural dis-
tortions, using Eq. (8) for F=t, we can rewrite the
structure factor as

F,-T+D@F, -0},

FE) =z,:f' exp{ik - [T,+D(¥,)]}

x}; exp{-ik - [T+V,(F)]} . (11)

We shall consider the case of a crystal with per-
iodic structural distortions and assume that the
structural distortions are of the form 5(?)
=A sinQ : T. In this case, using Eq. (8), one has
that the term containing the summation over ¥ in
Eq. (11) is proportional to

Ze"" U exp[-ik -A sinQ - (F,- )] .
Using the Jacobi-Auger expansion®

+ 00
gi¥sing = Z ™o (%), (12)

m== oo

where J, are Bessel functions of the first kind,

> :;\Hc’g
? o= 4
/ o A o Y >
o/ b o

FIG. 2. Model of the incommensurate structural dis-
tortions of a single layer of 17-TaS, discussed in the
text. The distortions are greatly exaggerated.
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this term becomes

exp(~iK-EQ +F,) D Jp(~ik +K)

x 2 expl-i® +m@) -] .
t

Finally, since the summation over f is proportion-
al to 8(K-K-mQ), where K is a reciprocal-lattice
vector of the crystal C,(3), one has that the struc-
ture factor and consequently the intensity, can be
nonzero only for scattering vectors K which satisfy
the relationship K=K +m@. We can write

F®) = ) FEBE-K-mQ).
K,m

Reflections corresponding to the case E=f, i.e.,
with m =0, are known as main reflections, and for
E=§+m6, m #0, as satellite reflections. For the
model of the incommensurate periodic structural
distortion phase of the layered transition-metal
dichalcogenide 17~TaS, with structural distortions
given by Eq. (10), the structure factor can be writ-
ten as

FR)E-K-mQ -m,[3,]Q

—m,[3f]6).

The main reflections for k =K and satellite reflec-
tions for

kK=K+m,Q+m,[3,]Q +m,[32]Q,

where at least one of m,, m,, and m, is nonzero.

V. BLOCH THEOREM FOR CRYSTALS WITH
STRUCTURAL DISTORTIONS

In this section we investigate the structure of the
eigenfunctions of the electronic Schrédinger equa-
tion in the case of a crystal with structural distor-
tions, and in particular in the case of a crystal
with periodic structural distortions. We first
briefly review the transformational properties of
time-independent scalar functions under trans-
formations of space-time and then define the trans-
formational properties of such functions under new
operators similiar to those introduced in Sec. II.
We then derive a Bloch theorem applicable to the
structure of electronic eigenfunctions of crystals
with structural distortions. Consider a scalar
function w defined in space-time. That is, we con-
sider a function w which maps points (T, ¢) of E,(3)
X E,(1) into the field of complex numbers. We con-
sider only static scalar functions and consequently

shall denote this function as w(F) instead of w(T, ?),
the invariance of w(r) under &,(1) being understood
without being explicitly stated. A function w(r)
transforms under an element F of & (3) as follows:
An element F of §,(3) transforms a function w(r)
into the function denoted by [ F]w(r) and defined by

[Flw(t)=w(F'T). (13)

We interpret the symbol [F] in this equation as
an operator on the space of all scalar functions de-
fined on E(3).

We introduce new more general operators on the
space of all scalar functions defined on E(3).
These operators are of the form [V ()| F], ele-
ments of the wreath product X‘xwﬂxs(s,, similar
to the operators introduced in Sec. II. The differ-
ence is that here F is an element of the Euclidean
group &,(3) and V(%) is a function which maps all
points T of E (3) into the distortion space V".

A scalar function w(T) can and shall be consider-
ed a function (T +V 4(F)), where V() is the
identity function which maps all points T of the
space E,(3) to the null vector of distortion space.
We define the action of an operator pair [V (F)| F]
of the wrea:Eh product !' Xw g (3) ON a scalar func-
tion w(T +V 4(F)) as follows: Kn operator [VE | F
transforms afunction w(¥ +V 4(¥)) into a function
denoted by [V (¥ ')ﬂF]w(l"+VB(F)) [ where the argu-
ment T of the function V(¥) has been replaced by T’
to distinguish it from the argument of the function
w] and defined by

[VE) | Flo(F+V )
=w(FIF+V,(F)-V@) . (14)

The action of the right-hand side component F of
the operator pair [V (F’)|| F] is only on the space
component T of the argument of the function
w(F+VB(F)L. The action of the left-hand side
component V (') of the operator pair [V (F')|| F] is
only on the distortion space component VB(F). The
latter is position dependent, that is, the value of
the function V (f’) which is added to the argument of
the function w on the right-hand side of Eq. (14) is
dependent on the value of the space component T of
the function w on the left-hand side of Eq. (14).

It follows from the definition of action of opera-
tors [ F] given in Eq. (13) and of operators
[V@®)|| F] in Eq. (14), that operators [F] are a
special case of operators [V(F)|| F]. Operators
[F] are operators of the form [V (¥)| F]. It also
follows from Eq. (14) that the product of two oper-
ator pairs [V,(F)|| F,] and [V,(¥)|| F,] is given by
Eq. (6). Thatis, since
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(Vi@ F)[V,ED F)0(F +V @) = [V,E )| Fy]w (F{5F +V 4 () - V, ()
=W(F;'F T +V () -V, () - V, (7] ')
=[ViE) +V,(F] )| F.F, Jw(F +V (),

it follows that:

[V1(F)”F1][V2(;)"Fz] = [VI(F) +V2(F1-1;)"F1F2] .

The Bloch theorem® is a statement concerning the
structure of the eigenfunctions zp(?) of the electron-
ic Schrodinger equation of a crystal C,(3)

HyT)=EpF). (15)

Its derivation is based on a relationship between
the symmetry group of the crystal C,(3) and the
symmetry group of the Hamiltonian H of the
Schrddinger equation. In the case of crystals
C,(3), the crystallographic space group _F of the
crystal C,(3) is an invariance group of the Hamil-
tonian #. This space group F contains an invariant
subgroup T of translations whose elements are de-
noted by t. The irreducible representations of this
Abelian subgroup of translations are _one- d1men-
smnal irreducible representations 1"", where T' (f
=et*'t  indexed by vectors K in the first Brillouin
zone. The eigenfunctions y(T) are then classified
according to the irreducible representations I'* of
T, indexed by K, and denoted by y7(¥). The Bloch
theorem states that the structure of the eigenfunc-
tions y(T) are such that

ve@® =T TUp),
U@ =U;(@).

The function Uy (t) is invariant under translations
tof T, that is, using Eq. (13), U -1) = Ug(P).

In the case of a crystal C,(3) with structural
distortions, the symmetry group of the crystal
with structural distortions is not the space group
F but a wreath group, a subgroup of the wreath
product V™, defined in Sec. II. Such a group
consists of operator pairs [V ,(F)||F], one such
pair for each element F of F and such that the
functions V F(r) map points corresponding to atom
positions of the crystal C,(3) to vectors in distor-
tion space V-. We shall assume the following rela-
tionship between the wreath-group symmetry of
the crystal with structural distortions and an in-
variance group of the Hamiltonian of the Schro-
dinger equation given in Eq. (15): There exists an
invariance group of the Hamiltonian, a subgroup of
the wreath product V™%, Qz (3 consisting of opera-
tor pairs [V,(r)||F], one such pair for each ele-
ment F of F, and functions V ,(r) which map all
points T of E +(3) to vectors in distortion space,
such that by restrlctmg the functions V ,(r to

points T corresponding to atom positions, this sub-
group becomes identical with the wreath-group
symmetry of the crystal with structural distor-
tions.

Since the crystal with structural distortions is
invariant under a wreath group, it then follows
that the Hamiltonian is invariant under a group of
operator pairs T, consisting of operator palrs
[V,@®)]T], one “such pair for each translation t of
the translational subgroup T of F. This group T,
of operator pairs is isomorphic to the group T?md
the irreducible representations of T, are then -
identical with those of T; i.e., T W @) =e ikt
The action of an operator pair [V, (r)”'] on an
eigenfunction y () follows from Eq. (14):

-

(V.ENEpe@ =9 F-T-V,F) . (16)

Since the irreducible representations of T, are I"F

[V,E)E) yp@ =e * Ty @). a7

Assuming that the exgenfunctlons P(T) are of the
form y3 (@) =e ¥ TUz(F), substituting into Egs. (16)
and (17), and comparing right-hand sides, one
finds

Up(F-T-V,@) = * YDy @), (18)

which can be rewritten as
(V.G | TJug@ =e ® Uy E).,

Consequently, a Bloch theorem for crystals with
structural distortions is as follows: The eigen-
function () of the electronic Schrédinger equa-
tion of a crystal with structural distortions whose
wreath group consists of the operator pairs

[V @[ F] is of the form

v =e"*®TUz @),
where,
[V.@Et)uz@ =e

As an example of the use of this Bloch theorem
for crystals with structural distortions, we con-
sider the nearly-free-electron approximation. In
this approximation U;(T) is given by the Fourier
integral

-

V@),
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U@ = [ Az @) dj . (19) 41®= [ U@ .

We shall determine the nonvanishing coefficients
Az(p) and subsequently the form of Uz(T) in the

Substituting Uz(r) from Eq. (18) into the above, us-
ing then Eq. (19), and summing over all elements
case of a crystal with structural distortions. The of the subgroup T, of the wreath group of the crys-
coefficients A;(E) are given by the inverse of Eq. tal with structural distortions, we derive an inte-
(19) gral equation for the coefficients Az (p)

J

o1 e e .
AT = 2 expli® - ) -V, () +i@ - 5) - T - b’ - ) A7 (5" dF ' . (20)
t

We shall consider the case of a crystal with periodic structural distortions given by D(F) =551n6 .T. The
crystal with these structural distortions has as its symmetry group a wreath group, a subgroup of the
wreath product v~ %Sy consisting of the operator pairs [Ve(r)|| F] where Vg(r) is defined by Eq. (9) for all
atomic pos1t10ns T of the crystal C 4(3). We assume then that the Hamiltonian of the electronic Schrodmger
Eq. (15) is invariant under a subgroup of V'xuQjp (s, COnsisting of operator pairs [V V . (F)|| F] where Vo (F) is
again defined by Eq. (9), but for all points of E (5)

For this case of a crystal with these structural distortions, using Eq. (12), Eq. (20) can be rewritten as

At(§)=§, f (-Al,-Z:exp[;-i(ﬁwm’ﬁ)-ﬂ)(fexp[i(m+m’)§-?+i(§'_ﬁ).f'] df)

>

-

X At(BWn(D + & = p")) I/ (-D + € -p")) dp’.

Summing over t and integrating over T we obtain

Ae®)=@n® Y [ u(B+ =5 (-5 - & -

’
m.m

where K is a reciprocal-lattice vector of the trans-
lation subgroup T of F. Az(p) is equal to zero if
the two delta functions in the above equation are
not s1multaneously satisfied. It follows that A;(p)
=0if p+K+mQ. Consequently, using Eq. (19),

the nearly-free-electron approximation, the eigen-
functions of a one-electron Schrodinger equation
for a crystal with periodic structural distortions
D(f)=D sinQ - T is given by

KIJE(;)"?_‘F'? Z A;(ﬁ,m)e"i*”‘a)'?, (21)
®,m

where K is a reciprocal-lattice vector of the crys-
tal C,(3).

The charge density p3(f)=| () |? corresponding
to the Kth eigenfunction y3(F) can be calculated us-
ing Eq. (21). This charge density can be written in
the form

pr(®) =p} ) + ) pFF)cos(m@-F),

m#=0

PNAE) 6K - p'-mQ)6(p’' - B+ (m+m " Q)dp’,

r

where the functions p¥(¥), m=0,1,..., are func-
tions invariant under translations of the crystal
C,(3); i.e., pF(T+D=pE(E). Consequently, the
charge density in the nearly free-electron approx-
imation for a crystal C,(3) with periodic structural
distortions is a modulated charge density, contain-
ing terms consisting of charge densities having the
translational periodicity of the undlstorted crystal
C,(3) modulated by functions cos(m@ - T).
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