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A new method is presented to determine the irreducible representations of the space group of a
crystal contained in the representation whose basis functions are the components of a tensor field
defined on the atoms of a crystal. This reducible representation is the direct product of a tensor
representation, dependent only on the tensor, and a permutation representation dependent only
on how the atoms permute under elements of the space group. The permutation representation is
first separately reduced prior to the reduction of the direct product. The permutation
representation is shown to be an induced representation and its reduction is facilitated using the
theory of induced representations. Examples and tables of results of applying this method are
given in the case of a polar vector tensor field, applicable to lattice vibrational problems, and
crystals, as the diamond structure, of space group symmetry 0;,.

PACS numbers: 61.50.Em, 02.20. +b

I. INTRODUCTION

In many problems in solid-state physics it is often neces-
sary to determine the irreducible representations of the space
group of a crystal contained in a tensor field representation,
a reducible representation of the space group whose basis
functions are components of a tensor defined on the atoms of
the crystal. In lattice vibrational problems’? the basis func-
tions of the tensor field representation are components of a
three component tensor defined on each atom, the displace-
ments of each atom. In classifying magnetic ordering in crys-
tals by irreducible representations of a nonmagnetic space
group,*~® one reduces a tensor field representation whose ba-
sis functions are the components of the atomic spins. Also, in
applying the tensor-field criterion® in the Landau theory of
continuous phase transitions, one reduces a tensor field re-
presentation, as in the case of magnetostructural phase tran-
sitions where the basis functions are components of a six-
component tensor’ defined on each atom.

The tensor field representation is the direct product of a
permutation representation of the atoms of the crystal, re-
presenting how the atoms of the crystal permute under the
space group elements of the crystal, and a tensor representa-
tion associated with the transformation of the tensor compo-
nents defined on the atoms. In the case of lattice vibrational
problems, the tensor representation is the polar vector repre-
sentation, in the case of classification of magnetic ordering, it
is the axial vector representation, and in the case of magne-
tostructural phase transitions, it is the direct product of the
polar and axial vector representations.

To determine the irreducible representations contained
in the tensor field representation one could use the standard
group theoretical projection operator method® as has been
done, for example, in the case of lattice vibrational prob-
lems."' Such a method, while of course giving the correct
irreducible representations, does not take into account the
common property of all tensor field representations defined
on a specific crystal: The permutation representation com-
ponent of the tensor field representation is the same for all
tensor field representations defined on the crystal. This com-
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monality has led to an alternate method to determine the
irreducible representations contained in the tensor field re-
presentation: First determine the irreducible representations
contained in the permutation representation, and then those
contained in the tensor field representation.

Lulek® has considered the lattice vibrational problem of
molecules using such a method. The irreducible representa-
tion of the point group of the molecule contained in the per-
mutational representation, there called the positional repre-
sentation, are determined using the theory of representations
of permutation groups. Kuzma, Kupolowski, and Lulek'®
have applied this method to the cases of the lattice vibrations
of a regular tetrahedron and cube. Birman, Kotzev, and Lit-
vin,'! in the context of the tensor-field criterion of the Lan-
dau theory of continuous phase transitions, have also used
such a method. They have derived using the theory of color
groups the k = 0 irreducible representations of a space
group contained in the permutation representation for all
possible crystals. Berenson, Kotzev, and Litvin'? have then
tabulated the k = 0 irreducible representations of a space
group in the tensor field representation, for all possible crys-
talsin the cases where the tensor representation is taken to be
the polar vector representation, the axial vector representa-
tion, the product of the polar and axial vector representa-
tions, and the symmetrized square of the polar vector
representation.

In this paper we shall consider the problem of determin-
ing all irreducible representations of the space group of a
crystal contained in a tensor field representation defined on a
crystal. In Sec. II we show that the tensor field representa-
tion defined on an arbitrary crystal is the direct sum of the
tensor field representations defined on the arbitrary crystal’s
constituent simple crystals. The structure of the permuta-
tion representation of a simple crystal is derived in Sec. III.
In Sec. IV, using the theory of induced representations, a
general method is derived to determine all irreducible repre-
sentations of the space group of a crystal contained in the
permutation representation of a simple crystal. As an exam-
ple, all irreducible representations contained in the permuta-
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tion representations of all simple crystals of a crystal of space
group symmetry O] are derived and tabulated. Finally, in
Sec. V, we discuss determining all irreducible representa-
tions of the space group of a crystal contained in a tensor
field representation defined on a simple crystal. As an exam-
ple we consider the polar vector tensor-field representation
of the diamond structure in conjunction with the lattice vi-
brational problem in this structure.

Il. TENSOR FIELD REPRESENTATION

Consider a crystal of space group symmetry G and let
r;, i = 1,2---, denote the atomic position vectors of the atoms
of the crystal. To each atom of the crystal we associate a g-
component tensor 7~ with components .7 _, s = 1,2,....4.
The g-component function 7 (r;),, s = 1,2,...,q defined on
the atomic positions r;, i = 1,2,---, is called a g-component
tensor field on the crystal. The corresponding tensor field
representaion D {F(Crys) of the space group G is that repre-
sentation of G whose basis functions are the components
T (r;)ss s = 1,2,...,9, i = 1,2,-+, of the tensor field.

The tensor field representation D ¢F(Crys) can be writ-
ten as

D IF(Crys) = D EERM(Crys)X D {, (1)

where D gF*™(Crys) is the permutation representation of the
atoms of the crystal, representing how the atoms of the crys-
tal permute under elements of the space group of the crystal,
and D [ is the representation of G called the tensor represen-
tation whose basis functions are the ¢ components of the
tensor .7 . It is the purpose of this paper to derive a method to
determine the irreducible representations of G contained in a
tensor field representation D {F(Crys) defined by Eq. (1).

A crystal of space group symmetry G can be partitioned
into “simple crystals.””!* Each simple crystal consists of all
atoms whose atomic position vectors can be obtained by ap-
plying all elements of the space group G to any one atomic
position vector r, and is said to be generated by G from r. A
crystal can be considered as consisting of a certain number of
simple crystals, no two simple crystals have atoms in com-
mon, and the elements of G permute the atoms of each sim-
ple crystal among themselves.

Let the tensor field be defined on a crystal consisting of
m simple crystals generated by G fromr,, j = 1,2,...,m. Be-
cause the elements of G permute the atoms of each simple
crystal among themselves,

DEE*M(Crys) = D§™r)
+ DI + o+ DERME,),  (2)

that is, the permutation representation of the atoms of the
crystal is the direct sum of the permutation representations
DEERM(r,), j = 1,2,...,m, of each of the simple crystals. Sub-
stituting Eq. (2) into Eq. (1), the tensor field representation is
written

D (Crys) = [Dg¥M(r)) + D g™ M(ry)
+ o+ D EMr, ) ]X D G (3)
and subsequently as
DEF(Crys)=DE(r) + DE(r) + -+ D&r,)  (4)
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where D {f(r;), the tensor field representation of the jth sim-
ple crystal, is defined by

DEF(rj) = DEERM(rj)XDE- (3)
The tensor field representation of the crystal is, by Eq (4), the
direct sum of the tensor field representations associated with
each simple crystal. To determine the irreducible representa-
tion of G contained in D FF(Crys) is then equivalent to deter-
mining the irreducible representations of G contained in
each of the tensor field representations D & (r;),/ = 1,2,...,m,
of each simple crystal. Consequently, in what follows, we
shall restrict ourselves to the case of a crystal consisting of a
single simple crystal. We shall consider a single simple crys-
tal generated by G from the atomic position vector r, and the
tensor field representation D F(r) defined on this simple
crystal:

D) =D ¥F*Mr)xD L. (6)

Common to all tensor field representations D & (r) defined
on a specific simple crystal generated by G fromr, is the
permutation representation D g"*™(r) of the atoms of the
simple crystal.

IIl. PERMUTATION REPRESENTATION DZF"™(r)

Let D PFRM(r) be the permutation representation of the
atoms of a simple crystal generated by a space group G from
the atom position vector r. The position vector r can be char-
acterized by its site space group G{r), the subgroup of ele-
ments G of G such that

Gr=r+t, (7

where t is a primitive translation of the space group G. The
point group R(r) of G{r} is called the “site point group” of r.
One can expand the space group G into a coset decomposi-
tion with respect to G(r),

G = G{r) + G,G{r) + -~ + G,GIr), (8)

and define the set of atom positions G;r, i = 1,2,...,n, where
G, is a coset representative in Eq. (8). The coordinates of this
set of atom positions, for one or two of each class of space
groups G, each r, and a specific choice of coset representa-
tives, are given in the International Tables for X-Ray Crystal-
lography."* They are called there the “coordinates of equiv-
alent positions” and the site point group R(r) is called the
“point symmetry” of each of the equivalent positions.

In addition, we characterize the position vector r from
which a simple crystal is generated by G by the “site sub-
group** Hr), the subgroup of elements of the space group G
such that

Gr=r. 9)
Elements of the site subgroup Hir) are, in general, of the
form (R |v(R ) + tg) where R is an element of the site point
group R(r}, v(R ) the nonprimitive translation associated with
R, and t,, a specific primitive translation. The site subgroup
Hir) is isomorphic to the site point group R(r). However, if
the choice of the origin of the space group G is taken to be
that given in the International Tables for X-Ray Crystallog-
raphy,'* then the site point group R(r) is not necessarily a
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subgroup of the space group G. As we shall show below, it is
the site subgroup H(r) of the position vector r from which the
simple crystal is generated by G which plays a central role in
determining the irreducible representations of G contained
in the permutation representation D g=~M(r).
To determine the structure of the permutation repre-

sentation D E¥*M(r) we expand the space group G into a coset
decomposition with respect to the site subgroup Hir):

G = H(r) + G,H(r) + G,H(r) + --. (10)

Since all elements H(r) leave r invariant, the atomic position
vectors of the simple crystal generated by G from r are in a
one-to-one correspondence with the cosets of Eq. (10). That
is, the atomic position vectors r;, i = 1,2,3,.-., of the simple
crystal are such thatr, = G;r, i = 1,2,3,..., where G, is a co-
set representative of Eq. (10). Since the permutation repre-
sentation D {"*™(r) is the representation of G whose basis
functions are the atomic position vectors r; = G,r,
i=1,2,3,-, the (i, j)th component of the matrix D &F*M(r) is
oneif Gr; =r, or zeroif Gr; #r,. Consequently, the matrices
of the permutation representation D g*™(r) are defined by

1 if G, 'GG,eH(r),

DEERM(n[G ], = [
¢ MG, 0 otherwise,

(11)
where /,j = 1,2,3,-, and G, and Gj are coset representatives
of Eq. (10). It follows from Eq. (11) that the permutation
representation D &"*™(r) is the representation of the space
group G “induced” by the identity representation D te OF
the site subgroup H(r).'*> We shall write

D &M(r) =Dy 1G (12)

to denote the permutation representation as the representa-
tion of G induced by the identity representation of the site
subgroup Hir).

IV.REDUCTION OF PERMUTATION REPRESENTATION

A. General reduction

We determine the irreducible representations of a space
group G contained in the permutation representation
D &F*M(r): Let D &™) denote the (k*,v)th irreducible repre-
sentation of the space group G, and D g, the vth irreducible
representation of the group G(k) of the wave vector k.'® We
have

D((l;("v) =D&(k)TGr (13)

that is, the irreducible representation D %™ of G is induced
by the irreducible representation D ¢, of G(k). We decom-
pose the permutation representation

DMy =3 d(k*v)D§™, (14)
(k")

where d (k*,v) is the number of times the irreducible repre-
sentation D &™) of the space group G is contained in the
permutation representation D &F¥™(r). We shall determine
the coefficients d (k*,v) of Eq. (14) using the theory of induced
representations.'”!#

The number of times the irreducible representation
D™ is contained in D §F*M(r) is called the “intertwining
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number of D " with D §¥*™(r)”” and is denoted by the sym-
bol I[D &™), D EE”"M(r)]. From Eq. (14) we have then that

d (k*,v) =1[D&",D gF*M(r)]. (15)
Using Egs. (12} and (13) we can rewrite this as
d (k*,v) =1[D 4 1G, D gy, 1G]. (16)

To evaluate the intertwining number on the right-hand
side of Eq. (16) using the Intertwining Number Theorem'®
requires the introduction of a double coset decomposition of
G: We expand the space group G into a double coset decom-
position'’ with respect to the site subgroup H(r) and the
group G(k) of the wavevector k,

G = SH[rG,GlK) (17)

where the G, are double coset representatives. For each dou-
ble coset representative in Eq. (17) we define the group L,,

L, = Hr)nG,GKk)G !, (18)
and the representation D } of the group G,G(k)G , :
D (GG (k)G ")=D gy(G (k) (19)

Using the Intertwining Number Theorem,'® Eq. (16)
can be rewritten as

d (k*,V) = ZI [D ,VlL, yD ]l.{(r) lL, ]y (20)

where the summation is over all “4”’ corresponding to double
coset representatives G, of Eq. (17), with L, and D} defined,
respectively, by Eqgs. (18) and (19). A symbol D § |B denotes
the representation of the subgroup B of A subduced onto B
from the representation D § of A,' the representation of B
found by restricting the representation D (4 ) to elements
AeB. Equation (20) can be rewritten as

d(k*v) = YI[D,(DIL)X(D gy L) ], (21)

where D is the identity representation of L;. Finally, since
by Eq. (18), L; is a subgroup of H(r), D j;,, L, = D] , and

d(k*v)=SI[D},D}IL,]. (22)

Consequently, the number d (k*,v) of times the irreducible
representation D & of the space group G is contained in the
permutation representation D ¢"*™(r) is equal to the sum,
over the index /, of the number of times the identity represen-
tation of L, is contained in the subduced representation
D}IL,.

Equation (22) can be reformulated in terms of the irre-
ducible representations D g, of the group G(k) of the wave-
vector k: an intertwining number on the right-hand side of
Eq. (22) is defined by

1[DL.DNL]= —— 3 L, (23)

|Li ‘ L;
where |L;| is the order of the group L, and y}(L,) is the
character of D }(L,) defined by Eq. (19),
D}L,)=D}G,G kG ")=D G (G (Kk)) for the elements
G (k)= G, 'L,G; " of G(k). Since
DL,) = DG~ lLiGi)» IL;| =G~ lLiGil’ and
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G 7 'L,G, is a subgroup of G(k), we may rewrite Eq. (23) as

1
z Yeén (G 'L,G,),(24)

I[D}‘l,D‘vlL,] = m <

and subsequently,
1[D DL =1 [D g D éag G 'L,G, ] (25)

Substituting Eq. (25) into Eq. (22), the coefficients d (k*,v) of
Eq. (14) are given in terms of the irreducible representation
D gy bY

dk*v)=SI[DL o.Déw!G LG (26)

Consequently, the number d (k*,v) of times the irreducible
representation D & of the space group G is contained in the
permutation representation D g"*™(r) is equal to the sum,
over the index /, of the number of times the identity represen-
tation of G~ 'L, G,, a subgroup of G(k), is contained in the
representation D ¢, . Equation (25) provides a three-step
method to determine the number d (k*,v} of times in an irre-
ducible representation D & is contained in the permuta-
tion representation D &¥*M(r):

(1) Determine the double coset representatives G, of Eq.
(17).

(2) Determine for each i the subgroup G ;” 'L, G, of G(k)
using Eq.(18).

(3) Determine for each subgroup G~ 'L, G, the number
of times the identity representation is contained in
D %4 G 7 'L;G, using Eq. (24). The coefficient d (k*,v) of
Eq. (14), is given by Eq. (26) as the sum of the numbers deter-
mined in the above third step.

The calculation of the number of times the identity re-
presentation is contained in D &, |G, 'L,G;, Eq. (24), can
be simplified by taking into account the structure of the irre-
ducible representations D ¢, of the group G(k) of the wave
vector k.

B. k inside the Brillouin zone

Let (R |v(R ) + t) denote an element of the group L, de-
fined by Eq. (18), R(L,) the point group of L;, and (R;|v(R;))
the double coset representatives G; of Eq. (17). Since
(R |v(R) + t) is contained in H(r),

v({R)+t=r—Rr, (27)
and since (R |v(R ) + t) is also contained in G, 'G(K)G,,
R 'RRk=k +K, (28)

where K is a reciprocal lattice vector. If k is inside the Bril-
louin Zone K = 0 and the matrix of the irreducible represen-
tation D &, (G, 'L,G,) can be written as'®

D% (G 7 'L,G,) = exp{k-R [ '[V(R) + t — v(R))
+ RV(R:')]}D 1"1(k) (R~ ]RR:‘)> (29)

where D i, is the vth irreducible representation of the point
group R(k) of G(k). Using Eqs. (27) and (28) one finds that the
exponential term equals one, and

Déqk;(G P lLiG.‘) =D rz(k) (R i lRRi)' (30)

Consequently, for wavevectors k within the Brillouin Zone,
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Eq. (26) becomes
d(k*v) = ZI [D R orr, D R IR 'R(L)R; ], (31)

where R(L,) is the point group of L;, R, the rotational part of
a double coset representative, R(k) the point group of the
wavevector k, and R, 'R(L;)R; a subgroup of R(k).

To determine d (k*,v) is then a point group problem en-
tailing three steps analogous to the three steps given in the
preceding subsection:

(1) Determine the double coset representatives R, in

R = SRirjR,R(k) (32)

where R is the point group of the space group G, R(k} of G(k),
and R(r) is the site point group, the point group of H(r).

(2) Determine for each double coset representative R,
the subgroup R ;™ 'R(L; )R, of R(k) from

R 'R(L,)R, = R 7 'R(r)R,AR(k). (33)

(3)Determine for each subgroup R ;” 'R(L,)R, the num-
ber of times the identity representation is contained in D g,
subduced onto R ;| ‘R(L,)R,. The coefficient d (k*,v), Eq.
{31), is the sum of the numbers calculated in step three above.
For the special case of k = 0, R(k) = R, thereis only one
double coset representative in Eq. (32), R, = E, and
R [ 'R(L,)R, = R{r}). From Eq. (31) we have

d(0,v) = 1[D gD i \R(r)], (34)

and the number d (0,v) of times D ' is contained in the per-
mutation representation D 5-*M(r) is equal to the number of
times the identity representation is contained in D g sub-
duced onto the site point group R(r). Tables of d (0,v) for all
space groups G and site point groups R(r) are given by Kot-
zev, Litvin, and Birman.''

As an example we consider the space group G = 0;, and
the simple crystal generated by 0; fromr = (4, §, &), Wyckoff
(c) position in the notation of Ref. 14. The site point group is
R(r) = D (4. We shall determine the number of times an
irreducible representation D & of the space group G, with
k = (k, .k, ,k,)=A, is contained in the permutation repre-
sentation D &F*M(r).

The point group R(k) = C {27, and there are two double
coset representatives, in this case, in Eq. (32), R, = E and
R, = C,,. The corresponding subgroups, Eq. (33), are
R, 'RL)R, = C¥"and R ; 'R(L,)R, = C*. For this
wavevector k = A, the only nonzero intertwining numbers
in Eq. (31} are

I[D ‘C‘,JD 1C“,lc’wh) ] = ly
I[D¢ D¢, \C, =1 (35)
I[D ‘Cm,D 3( \C,, ] =1,

where for the index v of the irreducible representation D g,
we have used the conventions of Zak, Casher, Gluck, and
Gur." From Egs. (32) and (35), we have that the only nonze-
ro coefficients d (k*,v) with k = A are

d(A* 1) =2,
d(A*3)=1. (36)
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TABLE . Irreducible representations G ™ contained in the permutation representation D §¥*™(r) of a simple crystal generated by G = 0} from a point r:
The points r are denoted in the Wyckoff position notation of Ref. 14: (a) = (0,0,0), (b) = (L34}, () (144, (d) = (E:5.3),

i(e:) = (x,x,x), (f) = (%,0,0), (g) = (x,x,2), (h) = (},%,§ — x), and (i) = (x.p.z). The numberd (k *,v) of times D % " is contained in D §*~™(r} is found at the
intersection of the vth row of the k th subtable, and the column under the Wycokoff notation for the point 7. The notation for & and indexation of v is that of

Ref. 20.
roo@ o © @ @ Mm@ w0 ro@ o © @ @ O @ & 0
11 1 1 1 1 1 1 1 1
2 l K
3 1 1 1 2 1 1 2 2 3 4 1 71T 12
4 1 1 1 1 2 2 2 2 1 2 5 512
5 1 1 3 301 1 1 1 3 47 5 12
6 1 1 4 1 1 1 2 5712
71 1 1 1 1 1
8 1 1 1 2 L
9 i 2 3 1 1 1 1 2 2 31 2 4
10 1 1 2 1 3 2 1 2 4
3 1 1 2 4 4 8
4 4 1 i 1 2 3 2 4
R 1 1 1 2 3 4 3 6 5001 1 1 1 2 4
) ' 5 PO 6 1 1 2 4 4 8
3 | 3 36
4 1 1 1 1 2 3 3 I 6 U
5 1 ! 2 2 6 6 12 1 1 1 1 1 3 4 7 5 12
21 { 2 2 34 7 1 12
p 3 ] 1 1 2 5 712
11 1 ) 1 3 4 7 7 12 4 1 2 5 5 12
2 1 1 1 25 512
3 1 1 1 2 5 712 z
4 1 1 1 347 5 12 P : 2 4 6 12 12 24
A o
1 2 2 2 2 4 4 S 4 8 1 1 1 2 2 4 6 12 12 24
2 348 2 1 1 2 2 4 6 12 12 28
3 1 1 2 4 8 8§ 16
_ s
= i 1 | 1 ! 3 4 7 s 12
roo 1 2 2 4 6 12 12 24 2 1 i s 34 7 7 12
21 1 2 2 4 6 12 12 24 3 1 | 1 2 5 712
4 1 2 5 512
2
1 2 2 2 2 6 8 14 12 24 A
2 2 2 2 4 10 12 24 1 ) 2 2 4 6 12 12 24
2 1 2 2 4 6 12 12 24
X
11 1 ) 1 2 2 4 3 6 B
2 2 23 6 11 I 2 2 4 6 12 12 24
3 1 1 1 1 3 4 6 2 1 1 2 2 4 6 12 12 24
4 1 1 3 2 6
. M
2 2 3 3 6 8 14 12 24
1 1 1 1 2 3 6 6 12 ) 1 1 2 4 10 12 24
2 1 1 1 2 I 6 6 12
N
11 1 2 2 4 6 12 12 24
Consequently, the permutation representation D §¥%M(r) for 2 1 ! 2 2 4 6 12 12

G =0j and r = (}, }, }), contains the irreducible representa-
tion D¢™" twice and D ™ once, and no other irreducible
representations of the space group G = 0], with the wavevec-
tor k = A. This information can be found in Table I at the
intersection of the ““c”” column and the first and third rows of
subtable A.

C. k on the Brillouin Zone

For wavevectors k on the Brillouin Zone, in place of Eq.

(29), one writes'®
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DlG [ 'L,G) =™ BHNDY (R TR(L)R,),

(37)

where the primitive translation t(R ;| 'R (L,}R,) is deter-

mined by
G 'L,G,

= (R, 'R(L)R,IVR ~'R(L)R,)+tR 'R (L)R,)

D. B. Litvin
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and D, is the vth irreducible ray representation'® of the
point group R(k) of the wavevector k.

Using Eq. (37), Eq. (26) can be rewritten for wavevectors
k on the Brillouin Zone, as

d(k*v) = ZI [D X, 'R(l,,iR,’e’k.t—;ilM IR 7 'R(L,)R, ],
(39)

where D rug 18 the vth irreducible ray representation of Rk),
and t=t(R ;'R (L,)R,) is defined by Eq. (38).

The coefficients d (k*,v) are determined again by a
three-step procedure:

(1) The double coset representatives G, are determined
from Eq. (17).

(2) The subgroups R ;” 'R(L;)R, of R(k) are determined
from Eq. (33), and the translations t(R ,” 'R(L,)R;) from Eq.
(38).

(3) Determine for each subgroup R, R(L;)R; the number
of times the identity representation is contained in e™*D Rik)
subduced onto R ;" 'R(L,)R,. The coefficient d (k*,v), Eq.
(39), is the sum of the numbers calculated in step three above.

As an example we again consider the space group
G = 0], and the simple crystal generated by 0] from the (c)
positionr = (4, L, §). We shall determine the number of times
irreducible representations D & with k = (37/2a,
37/2a,0)=K are contained in the permutation representa-
tion D &F*M(r). The site subgroup

H(r) = (C$27)|0,0,0) + (T|}P 1, 1(C%$2710,0,0) and G(k) con-
sists of the elements (E |0,0,0),(m"|}, 1, 1), (m"™"]0,0,0),
(C$0,0,0) and all primitive translations of G = 0] . There
are two double coset representatives, Eq. (17), G, = (£ |0,0,0)
and G, = (C3]0,0,0). The corresponding subgroups of

R(k) = C5>™? are R 7 'R(L,)R, = C¥ with
t{E)=tm?)=0,and R; 'R(L)R, = C¥ witht(E) =0
and t(C3") = (0, — 1, — 1). Using Eq. (39) and the numbering
of Ref. 19 for the index v of irreducible ray representations,
the nonzero coefficients d (k*,v) for k = K, are in this
example:

d(K*,1) =2,
d(K*3) =1, (40)
d(K*4) = 1.

Consequently, the permutation representation D &5*™(r) for
G=0] andr = (4 & 3) contains the irreducible representa-
tion D &™" twice, the irreducible representations D ¥** and
D ¥"* each once, and no other irreducible representations
with the wavevector k = K. This information is found in
Table I at the intersection of the (c) column and rows of
subtable K.

In Table I we have tabulated all irreducible representa-
tions of the space group G = 0] contained in the permuta-
tion representations D £5RM(r) for all simple crystals generat-
edby G=0].

TABLEII The irreducible representations D  ,, contained in the direct product D ., X{D ¢ LR (k ) for G = 0} and the polar vector tensor representation
D[ = D: Theirreducible representations D ., contained in the direct product are listed to the right of the irreducible representation D * - Irreducible
representations D i ., are denoted by k. in the notation and indexation of Ref. 20.

r, I 0, 26, + 6, zZ, 3z,
r, r, o, 6, + 26,
r.‘ I-\9+r|0 Ql Q|+2Q2
r, L+ ry+ry+ry, Q. 20+ 0,
ry Fo+ N+ Ly+ 1
r, rs X, X + X, + X, S, S +S5,+ S,
r, r, X, X+ X, + X, S, S +S,+5,
Ty Lo+ 7T X, X+ X+ X, S, S\ +S8+8,
r, o+ T+ T+ T X, X+ X+ X, S, S+ S8 +8,
Ly, N+ I+ L+ T
A, 24, + A4,
W, W, +2Ww, A4, A, +24,
4, 4, + 45 W, W, + W,
4, 4, + A B, 2B, + B,
4, 4, + A B, B, + 28,
4, 4, + 4 K, K, + K, + K;
4, A +4,+ 4, +4,+ 4 K, K +K,+K, M, M, +2M,
K, K +K,+K, M, M, + M,
K, K, +K,+ K,
2, 2 4+32,+ 2, N, 2N, + N,
z, 3+ 3,45, N, N, + 2N,
z, 2+ 32+ 2, L, Ls+ L,
2, I +2,+ 3, L, L,+L,
L, L,+Ly+ 2L,
L, L+ L,
A, A+ A, Ly Li+L,
A, A, + A, L L, +L,+2L,
Ay A+ 4,424,
U, U+U,+ U,
= 25,4+ 5, U, U +U,+U,
=) 2425 U, U+ U+ U,
U, U,+U,+ U,
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V. REDUCTION OF TENSOR FIELD REPRESENTATION

The tensor field representation D }F(r) of a simple crys-
tal is defined by Eq. (6)

D) =D g™ XDy, (6)

where D FERM(r) is the permutation representation of the
atomic positions of the simple crystal, and D [ is the tensor
representation. In the preceding section we have derived a
method to reduce the permutation representation and here
shall assume that the coefficients d (k*,v) of Eq. {13) are
known. Substituting Eq. (13} into Eq. (6) we have

D= dk*[Dg"xDg]. (41)

To determine the irreducible representations in D .F(r) one
must reduce the direct product of irreducible representa-
tions D %" and the tensor representation D [ . If

DEXDE =3 Clk*vk*ADE, (42)
kT
then the reduced form of the tensor field representation is

DFiry= Y bk*vDE™, {43)
k*,v
where
bik* ) = 2 d (k*HC (k*7k*v). (44)
k>

We shall consider here tensor representations D §
which are independent of the translational components of
the elements of G, that is, which are k = O representations of
G. Consequently, in Eq. (42), k* = k*. Abbreviating
C (k*,v;k*,v) by C (k*,v,¥), we can write Egs. (42} and (44},
respectively, as

DEVXDE =S CK*v,ADE (45)
and
b(k*,v) = Sd (k*7)C (k*,7,v), (46)

where the coefficients C (k*,¥,v} are defined as the intertwin-
ing numbers

Ck*vv)=1[DE"DE'xXDL]. (47)
Using Eq. (3), this can be rewritten as

C(k*¥,v) = L[D g»D gy X (D & 1 GlK)) ] (48)
and since D (; is a k = 0 representation of G,

C(k*¥,v) = I[D gD g X (D & IR(K) ], (49)

where, if k is a wavevector inside the Brillouin Zone, D g,
and D y,, are irreducible representations of the point group
R(k), and if k is on the Brillouin Zone, D gy, and D g, are
replaced by D g, and D fw , irreducible ray representations
of R(k). For the space group G = 0] and D} = D, the
polar vector representation, the irreducible representations
D 3y, contained in D gy, X (D & LR(k)) have been calculated
and are tabulated in Table II. From this table the coefficients
C (k*,%,v) can be found for the case G =0, and DZ =D ..
For example, for k = A from Table II one finds the nonzero
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coefficients C (A*,v,v):
C(A%1,1)= C(A%,1,3) =1,

C(A*2,2)=C(A*2,3) =1,
(50

C(A%3,1)=C(A*32)=1,

C(A*33)=2

The number b (k*,v), Eq. (43), of times an irreducible
representation D ™" is contained in a tensor field represen-
tation D &F(r) is determined from Eq. (46), with the coeffi-
cients d (k*,#) calculated from Eq. (31) and C (k*,v,v) from
Eq. (49). For k = A, the nonzero coefficients d (A*,V) are giv-
en in Eq. (36) and the nonzero coefficients C (A*,¥,v) in Eq.
(50). Using Eq. {45) we have

b{A*1)=3,
b(A*2) =1, (S1)
b(A*3)=4.

Consequently, the tensor field representation D IF(r) for
G=0],r=(4 1), D =D, and k = A, contains the ir-
reducible representation D ™" three times, D ¢ once, and
D %™ four times.

For this case, where D, = D ¢, is the polar vector re-
presentation, the irreducible representations contained in
the tensor field representation D § (r), Eq. {6), are the lattice
vibration irreducible representations of the simple crystal
generated by G from r. For the diamond structure, G = 0;,
r = (0,0,0), the (a) position according to Ref. 14, we find for
k = A, from Eq. (46) and Tables I and II, the nonzero coeffi-
cients are b {A*,1) = b {A*,3) = 2. That is, the lattice vibra-
tion decomposition for the diamond structure at k = A is
2D3"Y + 2D %™ in agreement with Ref. 20.
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