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We formulate a general method for calculating energy eigenvalues and eigenfunctions in a simultaneous
analysis of nearly degenerate vibrational-rotational bands of spherical top molecules. The basis functions are
products of rigid rotor and N-dimensional harmonic oscillator eigenfunctions. General explicit expressions
are derived for the matrix elements of vibrational operators in the basis of N-dimensional harmonic oscillator
eigenfunctions. Using these general expressions, the matrix elements of vibrational operators in the basis of
five-dimensional harmonic oscillator eigenfunctions applicable, for example, in the analysis of the nearly
degenerate v, and v, fundamental vibrational-rotational bands of tetrahedral XY, molecules like CH,, are

calculated explicitly.

. INTRODUCTION

Nearly degenerate vibrational-rotational bands of
spherical top molecules are often close enough in spec-
tral frequency to produce significant perturbations., The
v, and v, fundamentals of CH, comprise an example, as
had been shown earlier.!™® Various theoretical ap-
proaches to a simultaneous analysis of such nearly de-
generate vibrational-rotational bands have been formu-
lated. In the case of v, and v, of CH,, Gray and
Robiette* combined the », Hamiltonian of Herranz and
Thyagarajan®; the v, Hamiltonian of Robiette, Gray,
and Birss®; and the Coriolis coupling term of Jahn! to
produce a {v;, v,} Hamiltonian. This was diagonalized
in a basis consisting of rigid-rotor eigenfunctions and
two and threefold harmonic oscillator eigenfunctions for
v, and v, respectively. In contrast, Berger™® treated
the v, and v, states as substates of a hypothetical five-
fold harmonic oscillator. This approach eliminated the
difficulty of applying the spherical tensor formalism to
Uy alone.® Another formalism, using an unsymmetrized
coupling scheme, has been developed and applied by
Champion®® to », and v, of CH,.

In this paper, we develop a completely general for-
malism for calculating the matrix elements of a Hamil-
tonian for an arbitrary number of nearly degenerate vi-
brational-rotational bands. The Hamiltonian of a {v;,
Va, ..., Vm} manifold of such bands with respective de-
generacies n;, 7n,,..., 1, can be expressed as
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which can be written in the form

N
3C=BJ2+hVOZ (ala;+8)+ - .
i=1

(2)

The first and second terms represent, respectively, a
rigid rotor and a harmonic oscillator of degeneracy N
=M +M+... +n,. Using as our basis functions the
products of eigenfunctions of these operators, we show
explicitly how to calculate matrix elements of the re-
maining terms. The calculation of matrix elements of
rotational operators in the basis of rigid-rotor eigen-
functions is well developed.!! The calculation of matrix
elements of vibrational operators in the basis of N-
degenerate harmonic oscillator eigenfunctions is simpli-
fied by Louck’s!? formalism, Explicit expressions will
be given below for the latter calculation. It is impor-
tant tonote that the Coriolis coupling term will be intro-
duced explicitly in connection with Egs. (2’) and Egs.
(20)-(22).

The nearly degenerate 2v,, 2v,, and v, + v, overtone
and combination bands'¥!* of CH, can be treated as com-
ponents of the {v,, v,} manifold and, using the above
formalism with N=2+3=35, analyzed on the basis of a
fivefold oscillator. The 2v;, 2v,;, and v, +v; bands can
be analyzed on the basis of a fourfold harmonic oscil-
lator, i.e., N=1+3=4. Any pure overtone of v; can
also be analyzed using this formalism, of course, on
the basis of a threefold oscillator.

As a more detailed example, consider the v, and v
bands of a tetrahedral XY, molecule like CH,. We ex-
press!® the rotational-vibrational Hamiltonian for the
{Vz, v4} manifold as

3

5
RzBJa+hV4Z(a¥a¢+§)+hV2 (alag+3)+--- . (1"
a1 1ad
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al and a, are creation and annihilation operators, re-
spectively, for the triply-degenerate v, (=1, 2, 3) and
doubly degenerate v,(i =4, 5) harmonic oscillators.
can be written in the form

5
3C= BJ? 4 hug 3 (a} @, + %)+ h(vy - v,)/4
ia1

3 5
A [2 aIa,—E a}a‘]+3(3' , 2"
ial =4
where vy=3(v, +v,) and 3’ contains the Coriolis coupling
term together with higher-order vibrational, rotational,
and vibrational-rotational terms as indicated in Eqgs.
(20) and (21) and the accompanyirg text. The first two
terms in Eq. (2’) represent a rigid rotor and a quintuply
degenerate harmonic oscillator.

In the next section, results concerning N-dimensional
harmonic oscillator eigenfunctions and matrix elements
of vibrational operators'? are reviewed. Explicit ex-
pressions for the calculation of the matrix elements of
vibrational operators in the basis of N-dimensional
harmonic oscillator eigenfunctions are then given. u oy,
Sec. III, we show how these expressions can be used to
deduce the matrix elements of the vibrational operators
of the Hamiltonian for the purpose of analyzing the {Vz,
v,y manifold. These matrix elements are derived ex-
plicitly and tabulated,

Il. THEORY

The Hamiltonian for an N-dimensional (isotropic)
harmonic oscillator is

N
H=§hu§ [(p, /1P + %3], (3)

where #=hk/27 and the commutator [x,, p,]=i#6;,. With
creation and annihilation operators defined, respective-
ly, by

aj=(1/V2)x; - p; /1) , 4)
a;=(1/V2)(x;+ 0,/ B) , (5)
with [a;, a;]=[d}, a}]=0 and [a,, a}]=5;, the Hamiltonian
H can be rewritten as
N
H:hvz (@a;+3) . (6)
i=1
The 3 N(N - 1) components of the vibrational angular
momentum are defined by
L(, j)'—‘xipl"xjpi ’ (7

with ¢<j; this can be written as

3909

L(i, ) =i Ka,a] - a;df) . (8)

The vibrational angular momentum analogs of J2 are
defined by

K
%= 2 [LG, E, (9)
i<jsl

where K=N, N-1,..., 2 is an index labeling the N-1
vibrational angular momenta and L,= L(1, 2).

Louck® has shown that {H, 1%, I%,,..., I%, L(1, 2)}
constitute a complete set of commuting operators. The
eigenfunctions and eigenvalues of this set of operators
are given by

H\P(‘U, lN’ lN-ls LA ] la, 12)

=h(v+ S NY(D, Iy, Iyeyy oo bay ) (10)
L%(\Il(‘l), lN’ lN-l’ R | lS’ la)
=L+ K=2YB20(v, Ly, Uyeyyoney By ) (11)

with K=N, N-1,...,3 and
L(ls Z)W(Uy lN’ lN-I, vy l!i, 12)
=l2h—‘1’(v, lN: lN-ly ey l39 lz) ’ (12)

where v=0,1, 2,...; ly=v,v-2, v-4,..., Oor 1;
lN-1=0, 1, 2,..., lN;"'; l8=09 19 2""’ l4; and lz=0;
+1,+2,...,+1;. For example, in the familiar three-
dimensional case, N=3 and H¥(v, &, &) =hv(v+3) ¥(v,
L, L), Lg"(v’ la, lz)=la(ls+1)7l—a‘l’(”, L, lz), and L(1,
2)\1’(0; l&: lz)=lzﬁ‘1’(v, ZS’ lz)-

The set of eigenfunctions ¥(v, Iy, ly.y,..., L, b)
provides a convenient basis in which to calculate the
matrix elements of an arbitrary vibrational operator
of a vibrational-rotational Hamiltonian. Such an opera-
tor can be written, as exemplified in Eqs. (22)~(24) be-
low, in terms of the following set of vibrational opera-
tors:

L(i, H=imaal -a@)) , i<j=1,2,...,N, (13a)
M@, j)=ilaal+ @), i<j=1,2,...,N, (13b)
ala;, i=1,2,...,N. (13c)

The calculation of their matrix elements is simplified
by Louck’s' formalism. The matrix elements of L(1,
2) are given by

(U,, l;V, lSV-l;"', lsl,léIL(ly 2)]1), lN, lN-l,"U 13’ l2>

N
=6(v, ) [T (2, 13) (14)
Ka2
and those of L(K~1, K) by

N
<vl, ”V: lk-l: Ty lg; léIL(K— l,K)lvy lN’ lN-l, ey ls, lz>=5(v" v) H 6(ll" lr){é(lﬁ’-ly lK-1+1)ﬁ

r#K-1

x[&— L)l + Uy + K = 2) ey = Ly 4 V(U + Lyg + K = 3)

(2l + K—3)(2lg,+ K-1)

1/2
] + 0Ly, gy -1 7

< [(l,, = Uy + 1)+ Loy + K= 3) (peay = ) By + L + K—4)]1/2} ’ (15)

(2l + K = 5)(2lg.y + K= 3)
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where K =3,4, ..., N; and I, =0 by definition.
lated using the commutation relations

inLG,5)=[LG,5 -1),L(G -1,7)] .
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The matrix elements of the remaining operators L(;,j) are calcu-

(16)

The matrix elements of M(i,j) and a}a, are simply calculated from the matrix elements of the creation and an-

nihilation operators af and a;, /=1, 2,

(U” ”V} lﬂv-n ceey 13: I3 IaN'U lN; N=1y ¢ ¢+ lB lz>

Ne=

, N. The operators a}, and ay have matrix elements

6(l;(9 ll() {G(UI’ U—l) b(lfvy ZN+1)[

K=2

(V=0 (ly = lyeg + DIy + Ly g + N = 2)]1’2
(2l + N=2)(2ly + N)

(V4L + N=2)(ly = Lyt Yy + Lyoy + N —3) 172
- - ' _ N N~ CN=L\N PNy
8, v=1)8(ly, Ly 1)[ @Iy 1 N -8)2lps N=2) ] ’ (7)
and
<U, ZN; l Nelg ey lé, lél“}llv, le lN-la"‘, lS’ ZZ>
N~=
(Ol + Ny = Ly + V(I + Ly + N= 2)]H/2
= ! -— 4
Q 8(14, .z,(){ 8(¢, v+1) 6(1" g, Ly+ 1)[ C R v T ]
(v =Ly +2)(Ly = Loy ) Iy + lyg + N = 3)] 1/2
4 _—
+8(v, v 1) (1Y, Iy 1)[ @Iy + N=B)(2ly+ N=2) : (18)

The matrix elements of the remaining creation and an-
nihilation operators are calculated using the commuta-
tion relations

iﬁaf=[a;'v, L(i, M] s

ey =[aN9 L(i, N)] . (19)

Il. MATRIX ELEMENTS OF {v, v, } HAMILTONIAN

In the simultaneous analysis of the {v,, v,} bands of
spherical top molecules like methane, we consider the
special case of the above formalism for N=5. To cal-
culate the matrix elements of the Hamiltonian ¥ in Eq.
(2’), we use the basis functions ¥(v, L, I,, &, L) ®(J, K),
where ¥(J, K) is a rigid-rotor eigenfunction and ¥(v, %,
L, L, L) is a five-dimensional harmonic oscillator eigen-
function, The relationship between the ¥(v, s, l, &, )
of the {v,, v,} manifold and the v, and v, harmonic oscil-
lator eigenfunctions is given in Eq. (A3) of Appendix A.

The fundamental {v,, v,} Hamiltonian of Eq. (2') can
be written as

3C=hvy + 3 hyy + hvg+ v, v, split)
+3Cg + kg - SBY +3Cru, + Iguy + 3o,

where hy, + v, and hvy =3 k(v,+ v,) are the {v,, v} vibra-
tional energies for the ground state and “average” funda-
mental, respectively. The eigenvalues of

3 5
3(vy v,y Split)=zh(yy - VZ)[ iE ala; - Z a{ai]
-1 rovy

represent the difference between the average fundamen-
tal energy sy, and the energies kv, and v, of their re-
spective harmonic oscillators. And kJ - S?% is the
Coriolis coupling term.! The remaining terms 3Cg,
Hgvy, Hgy,, and 3G, are pure rotational, vibrational-
rotation, and pure vibrational, respectively. Note that
3’ of Eq. (2') is now more explicitly specified as 3y

- BJ%+ kJ - S +3Cq,, +3Cry, + 3y, Matrix elements of

(20)

(21)

all vibrational operators in the {vz, V4} Hamiltonian of
Eq. (20) can be calculated using the basis functions
¥(v=1, I, I, L, 1) and the formalism of the previous
section.

All vibrational operators in the {vz, V4} Hamiltonian
considered by Gray and Robiette, * together with higher-
order vibrational terms considered by Hecht,® can be
related to the N=5 operators L(i, j), M(i, j}, and dla,
in Egs. (13a)-(13c¢). For example, the Cartesian
components of the vibrational part S*¥ of Jahn’s
Coriolis coupling term! can be expressed as

S&Y =1 L(1, +3V3 L, 5), (22a)
S =4 11, 4 -3 V3 L1, 5), (22b)
SV -1(3,4). (22¢)

The two vibrational-rotational operators of Hpy,, de-
noted* by 7 and N, can be written as

— (1202 1(4, 5)(Jidye+ Jedyly) (23)
N=(a}a, - ala;)(J%+ J% - 2J%)
+iM (4, 5)V3(J2 - J%) . (24)

The matrix elements of all vibrational operators

L(7, j), M(i, ), and ala; in the fundamental state of a
five-dimensional xsotroplc harmonic oscillator have been
calculated and are tabulated in Appendix B.

In the general case of {1, v,} and other manifolds,
the analytical results developed in the present work
will be helpful in calculations related to the spectra of
nearly-degenerate vibrational-rotational bands of spheri-
cal-top molecules like methane. The general formalism
will facilitate simultaneous analysis of these bands.
Combination and overtone bands can be handled in a
routine manner, and entire computations can be dealt
with systematically.
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APPENDIX A: RELATIONSHIP BETWEEN FIVE-DIMENSIONAL AND v, AND v, HARMONIC OSCILLATOR
E{GENFUNCTIONS

The five-dimensional harmonic oscillator eigenfunction ¥(v, &, I, &, L) can be written as a linear combination of
occupancy states |, Us, Ws, s, Ks), Where [see Eq. (1)] u,, ua, and uy refer to the triply-degenerate v,; and i,
and ug refer to the doubly-degenerate v,.

’
\II(U, l5; l&s l:b lz)= Z C(v, ls: lh Za: la§ Kyy Hzy B3y Uy u’a‘){“u Hay, K3y Ky “’5> . (Al)

[
The prime on the sum over all y; denotes the restriction 2?,1 p; =v. Conditions on the coefficients C(v, I;, I,, L,
L; uy, B2, Hs, iy, Hs) are derived by substituting Eq. (Al) intoEqgs. (11) and (12), and expressing the operators L%
in terms of ereation and annihilation operators by means of Eqs. (8) and (9). For v=0, 1, and 2, then

¥(0, 0, 0,0, 0)=(0, 0, 0, 0, 0}, (AZ)
¥(1,1,0,0,0=—-10,0,0,0, 1),

¥(1,2,2,0,0y=4/0,0,0,1,0),

®(1,1, 1,1, 1)==-(1/2)]1, 0, 0, 0, 0)+4|0, 1, 0, 0, 0)) ,

¥(1,1,1,1,0=]0,0,1,0, 0,

¥(1, 1, 1,1, -1)=(1/¥2)|1, 0, 0, 0, 0)-34|0, 1, 0, 0, O)) , (A3)
¥(2, 0, 0, 0, 0)=(1/v5)|2, 0,0, 0,0)+(0,2,0,0,0+[0,0,2,0 04+[0,0,0,2,04+0,0,0,0,2),
¥(2, 2, 0, 0, 0)=(1/V20)(]2, 0, 0, 0, 0)+ |0, 2, 0, 0, 0)+]0, 0, 2, 0, 0)+ |0, 0, 0, 2, 0)~4|0, 0, 0, 0, 2)) ,
¥(2,2,1,0, 0)=i0,0,0,1, 1),

w2, 2,1, 1, 1)=-(1/V2)X|1, 0, 0, 6, 1)+|0, 1, 0, 0, 1)),

¥(2,2,1,1,0)=]0,0,1,0, 1),

¥(2, 2, 1,1, -1)=(1/¥2)|1, 0, 0, 0, 1)-3|0, 1, 0, 0, 1)),

¥(2, 2, 2,0, 0)=-(1/V12)(|2, 0, 0, 0, 0)+ |0, 2, 0, 0, 0)+ |0, 0, 2, 0, 0)-3]0, 0, 0, 2, 0)) ,

(2,2, 2,1, 1)=(i/V2)|1,0,0, 1, 00+40, 1, 0, 1, 0) ,

¥(2,2,21,0=-i0,0,1,1,0),

(2, 2, 2,1, -1)==(i/V2)|1,0,0,1,0-40,1,0, 1, 0)),

¥(2, 2, 2,2 2)=-3(]2,0,0,0,0-]0, 2,0, 0, 0)+4v2|1, 1, 0, 0, O)) ,

w2, 2, 2,2, 1)=(1/~2)(|1,0,1,0,00+4]0, 1, 1, 0, 0)) ,

(2,2, 2,2 00=(1/%6)(2,0,0,004+|0,2 0,0, 0-2]0,0,20,0),

¥(2, 2,22 -1)=-(1/v2)|1, 0,1, 0,0) =30, 1, 1, 0, 0)) ,

w2, 2,22 -2)=-3(|2,0,0,0,0-0,2,0,0,0-iv2{1, 1, 0, 0, 0)) ,

For the v=1 fundamental, the five-dimensional harmonic oscillator eigenfunctions ¥(1,1,0,0,0)and ¥(1, 1, 1, O,
0) correspond to v,; and ®(1, 1, 1, 1, b) with , =0 and + 1, to Vy.

(A4)

APPENDIX B: MATRIX ELEMENTS OF L (i), M(ij), AND afa,- IN FUNDAMENTAL FIVE-DIMENSIONAL
ISOTROPIC HARMONIC OSCILLATOR

Matrix elements of the vibrational operators defined in Egs. (13a)-(13¢) can be expressed in a five-by-five ar-
ray whose rows and columns are labeled by the ordered states 11, 1, 0,0, 0), 11,1, 1, 0, 0), | 1,1,1,1, 1),
11, 1,1,1,0), and 11, 1, 1, 1, -1), corresponding to row and column labels a, B, 7, 6, and ¢, respectively, The
following nonzero matrix elements result;

(vl L, 2)]7>=—(€|L(1, e =1, (Bla)
L, 3)]8) == (6] L(1, 3)| ) =(6] L(1, )| ) =— (] (1, 3)| 6)=im/V2 , (Blb)
@l L1, D] =—(B| L1, 9] =~ G| LA, 9|8 =(e| L(1, 8| =/V2 , (Ble)
(] L(1, 8)| v ==(a| L(1L, 5)|€) == {y| L(1, 5)| @) =4e| L1, 5)| ) =im/v2 (Bld)
(L2, 3)|8)=(8]L(2, 3)| )= (5] L(2, B)| e} =(c| L(2, 3)[8)= V2, (Ble)
vz, 918y =te| L2, 9]8)=-B| L2, 9]y =- 6| L(2, 8)|e) =iz, (B1f)
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(a| L(2, 5)|») =(a| L(2, 5)|e) =(v| L(2, 5)| @) =(e| L(2, 5)| @)=~ m/V2 , (Blg)
B L(3, 4)|8)=(5| L(3, 4)|p) =7, (B1h)
(8] L(3, 5)| @) =-(a| L(3, 5)|6)=in, (B1i)
(a|L(4, 5)[8) =Bl L(4, B)| @) =17, (B1j)
(| M1, 2| ==(e| M1, 2)| ) ==-17, (B2a)
(6] M(1, 8)e)=(e| MQ, 3)| 8)= - (x| MQ1, 3)]6)==(5] M(1, 3)|)=im/V2 , (B2Db)
@M, 9]y =-6IMa, ] ==&l m, 9]p)=(c| M0, 9|p)=-1/V2, (B2c)
(a| M(1, 5)|y) = —(a| M(1, 5)|€)=4y| M(1, B)| @)= -(e| M(1, 5)|a)=in/V2 , (B2d)
(y|m(2, 3)| 6) =— (8| M(2, 3)| ) =~ (5| M(2, 3)|€)=(e| M(2, 3)|8)=—1/V2 , (B2e)
<B| M(Z! 4)|7> =<B| M(2, 4) I €> = <7‘ M(Z; 4)| B> = <€ I M(Z’ 4) | B> ==l ’ (BZf)
(a| M(2, 5)| v =(a| M(2, 5)| €)= - (| M(2, 5)| @) == (| M(2, 5)| a)=-"/V2, (B2g)
Bl M3, v]o)=-(6| M2, 9|s) =1, (B2h)
(a| M(3, 5Y| 6 =(5| M(3, 5)|a)=—in, (B2i)
(| M(4, 5)|B)=- (8| M(4, 5)|2) =1, (B2j)
(vl ala|v) == (y| day| ) = —(e| aley | 9) = (e| dfey | €) =%, (B3a)
(7| da|v) =y | day| €) = (e | dap| v) =(e| | ) =3 , (B3b)
(6| alay| 6) =8| ala,| B) ={a| alag| ) =1 . (B3c)
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