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The simplest crystallographic color groups are the permutational color groups. Ele-
ments of these groups combine two types of transformations: One is a rotation and/or
translation of physical space and the other is a permutation. The groups considered here
are subgroups of direct products and abstractly isomorphic to crystallographic groups,
hence their relative simplicity. Despite this simplicity, there is a richness of information
contained in each such group. The group symbol G*=G/H'/H (A4,A'), conveys the fol-
lowing: the isomorphic crystallographic group G, a subgroup H' of G, the largest normal
subgroup H of G, contained in H’, and a transitive group of permutations P =(4,4’),
isomorphic to the factor group G/H. We derive and tabulate here all classes of
equivalent permutational color point groups using a definition of equivalence classes
which we physically motivate. For applications we require and report here the permuta-
tion representation D& of G associated with each G” and we reduce D& into irreducible
components. The major application given here is to the Landau theory of symmetry
change in continuous phase transitions. A complete set of tables is presented for all al-
lowed equitranslational (“Zellengleich” or k =0) phase transitions in crystals based on
group-theoretical criteria, including a new “kernel-core” criterion. The tables may be
used to determine all active representations for transitions between two specific groups or
alternatively, all possible subgroups which can be obtained from a specific group and ir-
reducible representation. We also relate two classifications schemes for phase transitions
to the structure of permutational color groups.

I. INTRODUCTION

In many problems in solid state physics it is
necessary to determine relationships between the
symmetry group of a crystal and its subgroups,
and between the representations of the symmetry
group and representations of its subgroups and fac-
tor groups.!~*

We present four examples: In the Landau
theory of phase transitions® the symmetry group
H'’ of the lower-symmetry phase is a subgroup of
the symmetry group G of the higher-symmetry
phase. In this theory, when applying the chain
subduction criterion,’® one determines the number
of times the identity representation D} of each
subgroup H' of a space group G is contained in the
restriction of an irreducible representation D} of G
to the subgroup H'. In lattice vibrational problems
one needs the irreducible representations of the
symmetry group G of the crystal whose basis func-
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tions are combinations of the linearly independent
displacements of the atoms.>*° These irreducible
representations are contained in the direct product
of the polar vector representation D} and the per-
mutation representation DE™ of the atomic posi-
tions. These irreducible representations are also of
importance in determining the existence of the
Jahn-Teller effect.!®!!

In classifying all possible magnetic arrangements
on crystals one can use magnetic space groups'>!3
or other types of color groups.!*!* One can also
determine the irreducible representations of the
nonmagnetic symmetry group of the crystal whose
basis functions, the magnetic modes, are linear
combinations of the components of the atomic
spins.!~!° These are the irreducible representations
contained in the direct product of the axial vector
representation Dé and the permutation representa-
tion DE™ of the magnetic atoms.

All relationships between groups, their sub-
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groups and factor groups, and their representations
which are required in solving such problems can be
determined, as we shall show, from the theory of
permutational crystallographic color groups. Per-
mutational crystallographic color groups are a spe-
cial type of a general class of groups called “color
groups”2%2! or “metacrystallographic groups.”??

Color groups are generalizations of the classical
crystallographic groups. The elements of these
groups consist of elements of classical crystallo-
graphic groups combined with some additional
operator. A general theory of crystallographic
color groups has been given by Koptsik and
Kotzev?®?® and has been the topic of some recent
reviews.!421:2425 Well-known special cases of color
groups are magnetic groups'>!* and spin
groups.?®=33 These and other types of color
groups'* !> have been used in the classification of
magnetic arrangements in crystals, of crystals with
defects,?! and incommensurate crystals.>*—3¢ Per-
mutational color point groups and many of the
permutational color space groups have been tabu-
lated.’’—* 1t is the purpose of this paper to
demonstrate the applicability of the theory and
tables of these groups to problems in solid-state
physics.

In Sec. II we briefly discuss the mathematical
structure of crystallographic color groups and we
give a method of deriving one type of such groups,
the so-called permutational color groups. Exam-
ples are given which show that magnetic groups
and black and white groups are special cases of
crystallographic color groups.

In Sec. III we discuss properties of permutation-
al crystallographic color groups. We choose a de-
finition of equivalence classes of permutational
crystallographic color groups based on physical
reasons which is different from that used by previ-
ous authors.?>373%40 We then tabulate all permuta-
tional crystallographic color point groups. In Sec.
IV we demonstrate that the permutation represen-
tation associated with each permutational color
group can be considered as both an “induced” or
an “engendered” representation. Some useful prop-
erties of induced and engendered representations
are given. The decomposition of the permutation
representation associated with each permutational
crystallographic color point group is then tabulat-
ed.

The group-theoretical criteria used in the
analysis of continuous phase transitions based on
the Landau theory are reformulated in Sec. V in
terms of the theory of permutational crystallo-
graphic color groups. It is shown that such a re-

formulation, along with the tables given here, sim-
plifies the application of these criteria. Two classi-
fication schemes of phase transitions based on the
theory of permutational crystallographic color
groups are discussed in Sec. VI.

II. CRYSTALLOGRAPHIC COLOR GROUPS

Let G be a crystallographic group with elements
g EG and P an arbitrary group with elements
pEP. A crystallographic color group G belong-
ing to the family of G and P is:

(1) A set of pairs (p;g) where all elements
g €EG appear as right-hand-side components of
members of the set, and all elements p € P appear
as left-hand-side components.

(2) A composition law is defined such that the
product of any two members of the set is con-
tained in the set, and that the group axioms' are
satisfied.

The many and varied crystallographic color
groups can be distinguished by either the particular
group P or the specific composition law used. Us-
ing group-extension theory, it has been
shown'#20:2324 that depending on the composition
law there are four types of color symmetry groups
P-type, Q-type, Wp-type, and Wy-type groups.
The composition law is, respectively, determined
by the direct product, semidirect product, wreath
product, and generalized wreath product of the
groups P and G.!*21%4

The group G is a crystallographic group and
groups P have been chosen primarily on the basis
of the application of color groups as symmetry
groups of functions.’??* In physical applications,
the functions represent physical properties defined
on the atoms of a crystal. Examples of groups P
are abstract groups,*” the time-inversion group,'>'?
groups of matrices,*® groups of permutations,’®*+43
and groups of rotations and antirotations.?6—32

In this paper we shall restrict ourselves to physi-
cal applications of P-type crystallographic color
groups G which are isomorphic to G, i.e., GP~G.
As all P-type color groups G* are subgroups of the
direct product P X G, the composition law for ele-
ments {p;;g;) EG? is given by

(P1;81)¢P2:82) ={p1P2;8182) - (1)

The identity element is {ep;e; ) where ep is the
identity element of P and e; of G. The inverse of
an element (p;;g;) is

(pi;gi) '=(pi &) .
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A. Isomorphism theorem for P-type groups

A method which can be used to derive all P-type
color groups belonging to a family of G and P is
based on an isomorphism theorem*® and is given
for the general case by Zamorzaev.** For P-type
color groups G* isomorphic to a crystallographic
group G the method is as follows: Let
GP={(pi;g;)}~G be a group belonging to the
family of G and P and isomorphic to the group G.
Let H") be the subgroup of G¥ of all elements of
the form (ep;h ),h EH CG. It follows from Eq.
(1) and the assumed isomorphism G°~G that H"
is a normal subgroup of G¥,H'V<{G?. Therefore
H<|G and the factor groups G*/H'" and G/H
are isomorphic to the group P:

GP/HV~G/H~P . 2

Using the isomorphisms of Eq. (2) one con-
structs all P-type color groups G'~G belonging to
the family of G and P as follows: First, one finds
all normal subgroups H of G such that G/H is iso-
morphic to P. For each normal subgroup H<1G
and each isomorphism G /H~P, G is written in a
coset decomposition with respect to H, and P writ-
ten as

G=H+gH+ " +gH, 5
P=eP+P2+"‘ +Pn ,

where each coset g;H, considered as the ith element
of the factor group G /H, and each element p; of
P, fori=1,2,...,n, are mapped into each other
by the isomorphism G /H~P. One then pairs the
element p; of P with each element g;4 of the ith
coset g;H of G to form pairs {p;;g;h ). The P-type
color group GP~G can be written as a union of
cosets

(pi;gYH'V={{pi;g:h),hEH} .
We have
GP=H"+(pyg: YH''+ -+ +(pasga )H'".
)

B. Examples of P-type groups

We present some well-known examples of P-type
crystallographic color point groups G isomorphic
to G. We first consider a group belonging to the
family of the crystallographic point group G =D;
and P =1'={1,1'}, where 1’ is time inversion.”> To
construct a group with G/H ~P we take H =C;

and write Eq. (3) as
G =C3 +2xC3 5
P=1+1".

(5)

The pairing of the elements of the cosets of G with
elements of P means in this case that each element
p; of P is paired with each of three elements of G.
The first element p; =1 is paired with each of the
three elements of the first coset of G, i.e., the three
elements of the subgroup H =C;={1,3,,32}. This
pairing gives the three elements of the subgroup
HY of G

Cy = ((1;1),(1;3,),(1;32)} . (6)

Pairing of the second element p,=1" with the ele-
ments of the second coset 2,Cy={2,,2,,2,,] gives
the additional three elements:

(152,)C = {(152,),(152,),(152,4 )} .

(7

This color group, containing six elements, is writ-
ten in the notation of Eq. (4) as

GP=Cy +(152,)Cy . (8)

This group is one of the 58 nontrivial magnetic
point groups,” D3(C3)=232' and also one of the 598
spin point groups,’®33 3(121"),

A second example of a P-type crystallographic
color point group with the same mathematical
structure but with a different group P, is the group
belonging to the family of G =D; and
P =8,={(1)(2),(12)}, the permutation group of
two objects. Again taking H = C,, the color group
GP~G consists of six elements similar to those
listed in Egs. (6) and (7). In those equations the
left-hand-side component 1 is replaced by the per-
mutation (1)(2), and 1’ by the permutation (12).
This group belongs to a class of color groups
which has been called “black and white” or “two-
color” groups.!®37:38

As a final example we take G =D; and

P=S;={(1)(2)(3),(123),(132) ,
(1)(23),(13)(2),(12)(3)} .

Taking H =C, we have G~P. One isomorphism
of G onto P leads to the three-color group consist-
ing of the six elements>740%4;

((1(2)3);1), (1)(23);2,)
((1233,) , ((13)(2);2,), 9)
((132);37) , €(12)(3);24) .
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The last two examples were of groups belonging to
a type of crystallographic color groups called per-

mutational crystallographic color groups. Permu-

tational crystallographic color groups are the topic
of the following section.

III. PERMUTATIONAL COLOR GROUP

We consider here P-type crystallographic color
groups, G* isomorphic to G, belonging to a family
of G and P, where G is a crystallographic group
and P a transitive group of permutations. We shall
call these groups “permutational color groups.”

All permutational color groups can be derived
using Zamorzaev’s method*® given in the preceding
section by taking P as a transitive group of permu-
tations. A second method for deriving all permu-
tational color groups has been given by van der
Waerden and Burckhardt** based on the theory of
transitive permutation representations of a group
G.* Tt has been shown?® that a combination of
both methods significantly simplifies the derivation
of these groups.

We first define transitive permutation represen-
tations of a group G and briefly review the method
of van der Waerden and Burckhardt. We then
present the combined method of constructing per-
mutational color groups. Finally we give the de-
finition of equivalence classes of permutational
color groups which we shall use.

A. Transitive permutation representations of G

Let H' be an arbitrary subgroup of G of finite
index n =[G:H']. For each subgroup H' of finite
index there exists*® a subgroup H of H' which is
the maximal normal subgroup of G contained in
H'. The group H is called the “core” of H’,
coreH'=H, and is defined as the intersection of all
subgroups conjugate to H' by elements of G:

coreH'= N gH'g '=H . (10)
gEG

If it can be proven that there is a homomor-
phism 7&’,
& G->PCS,, (11a)
P~G/H , (11b)

of the group G onto a transitive group of permuta-
tions P which is a subgroup of the symmetric
group S,. P is isomorphic to the factor group

G /H and the normal subgroup H =coreH’ is the

kernel of the homomorphism. Under this homor-
phism the subgroup H' of G is mapped onto a
subgroup P’ of P:

& H—P'CP, (12a)
P'~H'/JHCG/H . (12b)

The coreP’'=ep~C,.

The homomorphism 7 defined by Eq. (11a)
determines the transitive permutation representa-
tion I of G generated by the subgroup H':

Hg'z{ﬂg'(g);gEG} . (13)

The kernel of this representation, the set of all

g €G mapped by IIZ" onto the identity permuta-
tion ep € P, is the subgroup H =coreH’ defined by
Eq. (10). We have

kerll ' =coreH'=H . (14)

This transitive permutation representation of G is
constructed as follows: One writes the coset
decomposition of G with respect to H':

G=H+g,H'+ - - +g,H'. (15)

An element g €G is mapped by the homorphism
& into a permutation denoted by 7& (g) and de-
fined as the permutation of the indices
i=1,2,...,n of the cosets g;H' of the coset
decomposition equation (15). Under the action of
g €G, from the left, each coset g;H' is transformed
into the coset gg;H';

H gH - g,H
TG (g)= gHI gng, . ggnH/ EPEP (16)

The right-hand side of Eq. (16) is a permutation

p EP. The image of the representation

nZ LImII, is the set of all distinct permutations
7& (g) in the representation I1Z defined in Eq.
(13). This set constitutes a transitive group of per-
mutations which is a subgroup of the symmetric
group S,, that is ImI1{ =PCS,.

B. Construction of permutational color groups

One can construct all permutational color groups
using the method of van der Waerden and Burck-
hardt*: First one chooses a subgroup H' of G and
constructs the permutation representation I1& " of
G generated by the subgroup H' using Eq. (16).
One then palrs each element g € G with the permu-
tatlon 7TG (g)=p €P to construct a set of pairs
(rd'(g)g) =(p;g). Because ¥ is a representa-
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tion of G,

78 (g)7g (g2)=7E (8,82) ,

and the composition law for the set of pairs is the
same as Eq. (1):

(78 (8181 (7 & (g2):82) = (n & (8182);8182) -
(17)

Therefore, this set of pairs constitutes a permu-
tational color group G¥ isomorphic to G belonging
to the family of G and P. The group P =ImIIZ is
the transitive group of permutations isomorphic to
GP/H"V~G /H where H =coreH'. To find all
permutational color groups G’~G one could re-
peat the above procedure for each subgroup H' of
all groups G.

However, Koptsik and Kotzev?® have general-
ized Zamorzaev’s method® in such a manner that
it is not always necessary to repeat the above pro-
cedure for each subgroup H' of all groups G. Two
abstract groups 4 and A’ are introduced to accom-
plish this: Let H' be a subgroup of G with
coreH'=H. There exist two abstract groups 4 and
A’ such that

A~G/H ,
A'~H'/H , (18)

and such that 4’ is a subgroup of 4. The permu-
tation representation I1{ of 4 constructed using
Eq. (16),

n{ ={r](aya€4}, (19)

is a faithful representation of 4. We have from
Egs. (11), (13), and (18) that ImIT{ ~ImII{’, and
that

7 (gh)=m1(a;) (20)

for all h€H. Note that g;h is an element of the
coset g;H of G which is isomorphic by Eq. (18) to
the element a; of A. From Egs. (17) and (20) it
follows that the elements of the permutational
color group G? constructed from G and H' satisfy

(pisgih ) =(m& (gih)sgih ) = (w4 (a;);g:h)
21

for all h€EH =coreH'.

Consequently, all permutational color groups
G®~G derived from all groups G and H' having
the same groups 4 and A’ defined by Eq. (18), can
be constructed from the same permutation repre-
sentation II j," of A using Eq. (21). One then needs

only to construct the faithful transitive permuta-
tion I of A~G /H. We shall denote by the sym-
bol (4,4'), the transitive group of permutation
PCS, isomorphic to A and identical to ImIl{,

P=Imll{ =(4,4"),~A .

The subindex n is the index of the subgroup 4’ in
A, H' in G, of P' in P, and is equal to the dimen-
sions of the permutation representations I and
Hg ', denoted by dimlII j," and dimﬂg ', respectively.
When 4'={e, }~C, we shall use the symbol (4),
in place of (4,C;),. In this case (4), =ImII,"

where I1, ' is the regular representation of the
abstract group 4.

Each permutational color group G’~G belong-
ing to a family of G and P is uniquely determined
by G and the subgroup H’' of G. This has led to
the symbol?> G (H') for these groups. However,
this symbol may be misinterpreted as a symbol of
a magnetic group.'?

We propose, instead, a new more explicit nota-
tion for these groups. This notation’’~** G/H'/H
includes explicitly the normal subgroup H of G
such that G /H~P and coreH'=H~H'", see Eqs.
(2) and (10). We shall use the notation”® G/H'/H
(4,A"), which includes explicitly a symbol for the
transitive group of permutation P =(4,4'),. This
notation is useful in that two permutational color
groups G¥ having in this notation the same symbol
(4,4"), belong to families with the same transitive
permutation group P. This notation also provides
information useful in the classifications?* 38 of the
permutational color groups and, as will be shown
in Sec. VI, in the classification of phase transi-
tions.*’. In the case where H'=H and 4'~C, the
notation G /H (A4), will be used instead of
G/H/H (4,Cy),.

The group notation G*=G /H'/H (4,4"), con-
tains the following information:

G~G’={(p;g);gEG,pEP}, (22a)
H~HY

={(ep;h);hEH=CoreH'} , (22b)
H'~(H""

={(ph');h'EH',p'EP'CP}, (22¢)
(4,4, =PCS, , (22d)
A~P~G/H~G*/H'", (22¢)
A'~P'~H'/H~H)"/HV;4'C4, (22
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n=[4:4"]1=[P;P']=[G;H']
=dimIlZ =dimI1} . (22g)

H is the normal subgroup of G whose elements are
paired in G* with the identity permutation ep € P.
The transitive group of permutations P =(4,4"),
is a subgroup of the symmetric group S, and is de-
fined, usmg Egs. (16) and (18), by the representa-
tion 1, Eq. (19).

The above method, using Egs. (16) through (20),
is quite general?®?*: The groups G and H' can be
either point groups or space groups. In the latter
case H' can be either an equitranslational or equi-
class subgroup of the space group G. For equi-
translational subgroups H' of G, the common sub-
group of translations is an invariant subgroup of
G, H', and H =coreH'. The factor groups
G/T~G,H'/ T~H', and H/ T~H are isomorphic
to the resRectlve point groups G H ', and
H=coreHl’, of the corresponding space groups. In
this case of equitranslational subgroups H’, all per-
mutational color space groups G/H'/H (4,4'),
with the same permutational color point group
G/A'/H (4,4 ), have the same group P. The
permutation group

P=(4,4"),~G/H~G /A

is the image of the permutation representation H z
and of all ITZ":

P=(4,4"),=ImIl{ =ImNZ =Imn% . (3

For all point groups G and space groups G with
equitranslational subgroups H’, each factor group
G /H' is isomorphic to one of 18 abstract groups.
These are the 18 abstract groups to which all 32
point groups are isomorphic.>’” We shall denote
each of these 18 abstract groups 4, and subgroups
A’ of A, by a representative point group isomorph-
ic to A. These 18 representative point groups are
Cl: C2: C3’ C4’ C6: D2’ D3r D4: D6’ C4h» Cﬁh’ DZh:
Dy, D¢y, T, T}, O, and Oy,. There are 45 transi-
tive groups of permutation (4,4'), CS, which are
isomorphic to these 18 abstract groups 4.2%2!
These 45 groups are used in a classification of all
permutational color point groups*® and, as we shall
demonstrate below in Sec. V, for determining
group-subgroup relationships in the theory of
phase transitions.

C. Equivalence of permutational color groups

The problem of finding all permutational crys-
tallographic color groups GP~G can be solved by

one of the methods given above. However, one
usually does not want to know all such groups but
only one from each equivalence class of permuta-
tional color groups. First, equivalence classes must
be defined.

There is no general agreement on the definition
of equivalence classes of these groups.”> The de-
finition of equivalence classes of permutational
color groups which we shall use®>** has been
chosen on the basis of the physical applications of
these groups. It is a special case of the definition
of equivalence classes?*?* used for more general
types of color groups:

The permutational color groups G,/H} /H, and
G,/H /H, belong to the same equivalence class
and are said to be equivalent, if they belong to the
same family G; =G, =G and the subgroups H
and H are conjugate subgroups in G. That is,
there exists an element g €G such that H)
=gHyg ™.

It follows that two equivalent permutational color
groups G/H' /H, and G/H /H, are such that
H{=H,. A list of one group from each
equivalence class of all permutational color point
groups G~G is given in Table I. The number of
classes of G7 listed in this table, 279, is greater
than the number, 244, in the tables of Refs. 20, 37,
and 40. This is because in the definition of
equivalence classes used in these references, H}
and H need only be conjugate subgroups of the
full group of rotations O(3). This is a less
stringent condition than the condition to be conju-
gate subgroups of G used in our definition.

Central in the physical applications of permuta-
tional color groups discussed in Secs. V and VI, is
the matrix representation D " associated with each
permutational color group defined in Sec. IV.

With our definition of equivalence classes, repre-
sentations D& corresponding to equivalent permu-
tational color groups are equivalent representations,
and representations corresponding to nonequivalent
permutational color groups are nonequivalent rep-
resentations.

IV. PERMUTATION REPRESENTATION D&

The matrix representation D& associated with
each permutational color group G/H'/H (4,4"),
plays a central role in the physical applications of
permutational color groups. This representation is
defined as follows: To each permutation
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TABLE 1. (Continued.)

Oh—m 3m

1*

0, /DG /C (0,DF®))

3222

1*

0,,/D33/C; (0,D3),

32.23
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2%

Oh /D(zz’x’y) (DG)]Z
0,,/D4/D, (Ds,CY)s
0, /D" /D, (Dg,CY)s

3224
32.25

1*

—

1*

32.26
32.27
32.28
32.29
32.30

3231

2*

0,/DE* (D3)g
04,/Dap/Dop (D3,C%);

1*

0,/T (Dy),

1%

0,/T; (Cy),

1*

0,/0 (C,),

1%

0,/T; (Cy),

32.32
32.33

1*

0,/04 (C));

wg '(g),g € G,’of the transitive permutation repre-
sentation 11{,! of G, corresponds an n X n matrix
D (g) defined by

1, if gf’gngH’

0, otherwise

(D& ()= (24)
where g; and g; are coset representatives in the
coset decomposition given in Eq. (15). The set of
all matrices Dg '(g) for all g €G constitutes an n-
dimensional matrix representation DY "of G. We
shall call this representation the “permutation rep-
resentation” of G.

From the definition, Eq. (24), it follows that D&’
is an induced representation? of G. The represen-
tation D& "is induced from the identity representa-
tion D} of the subgroup H' of G. We denote this
relationship between the representation D¥ "of G
and D} of H' by

D¥'=D}1G . (25)

One can construct, in a similar manner, the
groups of matrices Dg}f}’, for all elements g H of
the factor group G /H, and D4, for all elements ay
of the abstract group A~G /H:

(D [H(g, H)]; = 1, if (g;H) 'g;H(g;H)EH'/H
/ 0, otherwise

(26)

1, if a; 'axa; €4’

0, otherwise .

[Df (ax)]= { (27

These groups of matrices are representations of the
groups G /H and A, respectively. Because of the
isomorphisms of Eq. (18), these representations are
equivalent. We choose the isomorphism such that
the matrices are identical for each g; H and a;
mapped into each other by this isomorphism:

DEH(g  H)=DF (ay) . (28)

It was shown above that the permutation repre-
sentation D& of G is induced by the identity repre-
sentation D of H'. Analogously, the representa-
tion Dg}{,” of G/H and D of A are induced,
respectively, by the identity representations DY JH
of H'/H and D of A":

Dg/’éH=D}11'/H 1G/H ,
DY¥'=D}14 . 29)

As will be shown below, in physical applications
of color groups it is of importance that the permu-
tation representation D& , Eq. (25), in addition to
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being induced by the identity representation D}p of
H'’ can also be considered an “engendered” repre-
sentation.! The representatlon DG' is engendered
by the representation D&/} /i H of the factor group

G /H or, by Eq. (28), by the representation D} of
the abstract group A~G /H.

Engendering' of a representation Dg of G by a
representation Dg /g of its factor group G/H is de-
fined as follows: Let H be a normal subgroup of
G. The cosets g;H of a coset decomposition of G
with respect to H,

G=H+gH+ " +8.,H, (30)

are elements of the factor group G/H. If Dg/y is
a representation of G /H, then to every coset gy H
of the factor group G /H corresponds a matrix
Dg,y(grH). We define a representation Dg of G
as follows: All matrices Dg(gih) for all h €EH are
set equal to the matrix Dg 5 (g H):

D(;(gkh)=Dg/H(ng) . (31)

The representation Dg so defined is the representa-
tion of the group G engendered by the representa-
tion Dg/p of its factor group G/H. We shall use
the symbol

Dg=Dg/y11G (32)

to denote that the representation Dg of G is engen-
dered by the representation D¢/ of its factor
group G /H.

Both representations D,y and Dg /511G have
the same dimensions. Dg=Dg,;11G is an irredu-
cible representation of G if and only if Dg /4 is an
irreducible representation of G/H. If the represen-
tation Dg /g is reducible,

Dg,y= 3, (Dgn | D /g)Db/h » (33)
j
then the engendered representation, Eq. (32), is also
reducible:
Dg= 3 (Dg | DE)DE . (34)
J
Each irreducible representation D{ in Eq. (34) is

engendered by one and only one irreducible repre-
sentation D¢/ contained in Eq. (33). That is,

D =Dl 11G , (35)

and

(D(;|D )—(D(;/HTTGID /HTfG)‘”(DG/H|DG/H)-

(36)
Two special cases of Egs. (34) to (36) are of im-

portance in the application of color groups to the
Landau theory of phase transitions:

(a) The permutatlon representation I1§ is engen-
dered by ¢/ JH F=mn4{, Eq. 19). Correspondmgly,
the permutation representatlon DG » Eqgs. (22) and
(24), is engendered by D4 /H —DA , Egs. (26)
through (28):

D¥ =D} 1G =DE/{f'11G~D{ 11G . 37

(b) Each irreducible representation D¢ contained
in the nth power of Dg=Dg /511G is engendered
by one and only one irreducible representation
D{ /i contained in the nth power of Dg 5. That
is, if

(Dg)n= 3 ((Dg), | D& )DL (38)
j

and

(Dg/t)n= 3 ((Dgu)n | Db/u)Dsw »  (39)
j
then
((Dg)n | DE)=((Dg /g 11G), | Dé /5 11G)
=((Dg/b)n | Db yur) - (40)

The above is also valid for the cases of the nth
symmetrized and antisymmetrized powers of a rep-
resentation Dg =Dg,y11G. That is,

((Dg)m | DE)=(Dg /51 )m) | D& /1) @1
((Dg )iy | DEY=(Dg /51 )t} | D /1) - 42)

The symbols (D)) and (D), denote, respectively,
the nth symmetrized and antisymmetrized powers
of the representation D.

A well-known example of engendered representa-
tions is the k =0 irreducible representations
D‘Gk =0%) of a space group G. We denote the nor-
mal subgroup of primitive translations of the space
group G by T={(1]t)}. We write the space
group G in a coset decomposition with respect to
T:

G=T+@ | )T+ " +By | 7w)T . (43)

The coset representatives (g; | 71) consist of an ele-
ment g; of the point group G of the space group G,
and a nonprimitive translation 7; associated with
8;. The isomorphism between the factor group

G /T and the point group G G/ T~G maps

each coset (&; | 7)T onto an element &; of the point
group G. In a k =0 irreducible representation
D" of the space group G the matrices of all ele-
ments
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& |+ E@ | 7T

are equal to the matrix DX(g;) =T, (g;) of the ir-
redumble representation DX=T", of the point
group G:

DEVN(E | T+ =T,(8) . (44)

Hence, a k =0 irreducible representation DS’ of
a space group G is engendered by an 1rredu01ble
representation DX =T, of the point group G

DYV'=D{11G=T,11G . 45)

Consequently, in many calculations, one uses the
irreducible representations I', of the point group G
in place of the k =0 irreducible representations
D&Y of the space group G.

The permutation representations D& ', Eq. (24),
are reducible. The reduction can be carried out us-
ing the theory of characters of representations.! ~*
In Table I alongside each permutational color point
group G/A'/H (4,4"), isomQrphlc to G, we have
tabulated the multiplicity (D IDJ ) with which
each irreducible representatlon D’ of G is con-
tained in the representatlon Dg

D~ 3, (Dg | DD - (46)

It follows from Egs. (23), (34)—(37), and (45),
that Table I is also applicable to all permutational
color space groups GF~G where H' is an equi-
translational subgroup of the space group G. One
needs only to omit the upper index in the Schon-
flies notation of the space groups G, H', and H to
find the corresponding point groups G, H', and H.
The multiplicity of a k =0 irreducible represen-
tation DY in DE' is equal to the multiplicity of
the irreducible representation D% =T, in Dé" P

(0¥ | D" =D¥ | Dg=T,) . @7

The latter multiplicities are those tabulated in
Table L.

V. LANDAU THEORY OF CONTINUOUS
PHASE TRANSITION

The Landau theory of continuous phase transi-
tions>*®*® considers a continuous phase transition
between a high-symmetry phase of a crystal of
symmetry G and a low-symmetry phase of symme-
try H'. The high-symmetry phase is described by
a density function po(r). The low-symmetry phase
is described by a density function p,(r) which can
be written as

p1(r)=po(r)+8p(r) . (48)

The function 8p(r) is called the symmetry-breaking
part of the density function. The low-symmetry-
phase density function is expanded as

pi(N=3 el Wi (r)

j m

=po(r)+3' SclWi(r), (49)
j m

where the functions W}, (r) are basis functions of
irreducible representations D¢ of the high-phase-
symmetry group G. The symbol E’j denotes sum-
mation over all irreducible representation of G ex-
cluding the identity representations D}. The coef-
ficients ¢}, are functions of pressure p and tem-
perature T, and are called order parameters. Given
the group G of the high-symmetry phase, by
minimizing the thermodynamic potential
®(p,T,c},) of the crystal with the coefficients ¢,
of Eq. (49) as variational order parameters, one can
determine the density function p,(r) and subse-
quently the symmetry H' of the low-symmetry
phase.

If the transition from a high-symmetry G to a
low-symmetry H' is a continuous phase transition
associated with a line of phase transitions in the
p-T plane, then the transition is associated with a
single irreducible or physically irreducible represen-
tation D¢ of G. The symmetry-breaking part
6p(r) of the density function p,(r) then has
nonzero coefficients c;, only for coefficients corre-
sponding to this irreducible representation. It has
been shown that the irreducible representation Dg
must then satisfy several group-theoretical cri-
teria.>>7% These criteria are reformulated below
using the theory of permutational color groups.
This reformulation simplifies the application of
these group-theoretical criteria in the analysis of
continuous phase transition.

A. Landau subgroup criterion

In the Landau theory, the symmetry group H' of
the low-symmetry phase is a subgroup of the
high-symmetry phase. All subgroups H' of G can
be found in a tabulation of all permutational color
groups G/H'/H(A,A'), belonging to the family of
G. A partial list of permutational color space
groups is given in Refs. 38, 40, and 41. A com-
plete list of all 279 permutational color points
groups is given in Table 1.
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B. Subduction criterion

The subduction criterion® is a condition restrict-

ing the irreducible representations D{ which can

be associated with phase transitions between phases

of symmetry G and H’, a subgroup of G. The

groups G and H’ and the irreducible representation

D}, are related by the subduction criterion
DLIH'= (D UH' | Dip Dy

i
with (D LH' | Dj)£0 . (50)

That is, the irreducible representation D¢ of G sub-
duced on the subgroup H' must contain the identi-
ty representation D}y of H'.

The subduction criterion is used to determine the
irreducible representations D¢ which can be associ-
ated with a phase transition between phases of
given symmetries G and H'. Alternatively, given
the symmetry group G and irreducible representa-
tion D{ associated with the phase transition, it can
be used to determine symmetry groups H' which
can arise in a continuous phase transition.

The number of times the identity representation
D). of H' is contained in D§ |H' is, by the Fro-
benious reciprocity theorem,! equal to the number
of times D{ is contained in the representation
D} 1G induced by the identity representation Dy
of H':

(D{\H' | Djy)=(D}1G | DE) . (51)

As was shown above in Eq. (25), the induced repre-
sentatlon D} 1G is the permutation representation

DY’ associated with the permutational color group
G/H'/H (4,4"),. Hence,

(DL H' | DYy )=(DE' | DE) . (52)

Consequently, the irreducible representation D{, sat-
isfies the subduction criterion for a transition be-
tween phases of symmetry G and H' if and only if
D{ is contained in the permutation representation
DY associated with the permutational color group
G/H'/H (4,4"),.

In Table I, we have tabulated the coefficients
DH ' [Dj ), Eq. (52), for the representation DIA’ " as-
somated w1th all permutational color point groups
G/H'/H (4,4"),. These coefficeints are applica-
ble in applying the subduction criterion to phase
transitions between phases of point-group sym-
metries G and H ' They are also applicable in ap-
plying the subduction criterion to phase transitions
between phases of space-group symmetry G and H'’
when H' is an equitranslational subgroup of G.

- For equitranslational phase transitions between
space groups G and H' the coefficients (Dg | Dé)
found in Table I are, using Eq. (47), set equal to
the coefficients (D§ | DY?). Using Eq. (52), they
determine the k =0 irreducible representation DY/
which can be associated with an equitranslational
phase transition between phases of space-group
symmetry G and H'. Alternatively, given the
space group G and k =0 irreducible representation

DPP, the coefficients (DH [D’ ) found in Table I
determme possible equltranslatlonal subgroups H'.

For example, consider a phase transition between
phases of symmetry G =0/ and its equitranslation-
al subgroup H'=C$,. We first determine all pos-
sible irreducible representations which satisfy the
subduction criterion for this transition. In Table I,
line 32.21, for the permutation color point group
Oy, /Cup/ g" (0,C4)¢ we find the nonzero coeffi-

cients (Do," |D£h), Eq. (46). The reduced form of
the representation Dé’ "is then

C .
Do’ =Tt &I &r; . (53)

Consequently, using Eq. (47), the k =0 irreducible

representations contained in D h are

D(O 1+) D(O 3+)

, Dg}“’ . (54)

’

From Eq. (52) it follows that the subduction cri-
terion is satisfied only for the k =0 irreducible rep-
resentations of G =0 in Eq. (54).

Now consider that we are given the group
G =0j and the irreducible representation
D(o 4+) =17 110/ and we wish to determine all

poss1b1e subgroups H' associated with this irreduci-
ble representation such that the subduction cri-
terion is satisfied. Using Table I, subsection 32, in
the column under I'}, one finds nonzero coeffl-
cients (07 LH ' |Dl ) for the groups o,/H'/8
(AA )n, where H'= CI: z Csz, Csx,C3, C4,
S4, Ci, Cop, CH, Cay, and C4h Consequently, the
possible equltranslatlonal transitions can be sub-
groups H' of O}, where H' is one of the point
groups given above. The corresponding equi-
translational subgroups H' are’!:

Ci7C%’C:C.;"Cgacgysi’Ci17C;thh’C§i)Cgh .
(55)

However, as we shall show below, most of these
groups are eliminated as possible subgroups H' by
some other group-theoretical criteria.
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C. Kernel-core criterion

In Sec. VB we have shown that each phase tran-
sition between phases of symmetry G and H' can
be associated with a permutational color group
G/H'/H (A,A'),. The first two groups in this no-
tation for permutational color groups were used in
the subduction criterion, Sec. V B restricting the
groups G and H' and irreducible representation D§
associated with a phase transition between phases
of symmetry G and H'. We shall now show that
H =coreH', Eq. (10), the third group in the permu-
tational color group symbol G/H'/H (4,4’),, can
be used to formulate an additional group-
theoretical criterion. This criterion, called the
kernel-core criterion, is an additional condition re-
stricting the groups G and H' and irreducible rep-
resentation D} associated with a phase transition.

If the phase transition between phases of sym-
metry G and H' is associated with an irreducible
representation D{;, then the kernel of this irreduci-
ble representation, kerD{, is equal to H =coreH’,
the core of the group H’ defined by Eq. (10):

kerD{ =H =coreH' . (56)

The proof of this criterion is given in Appendix A.

The kernel-core criterion, Eq. (56), is applied in
the same manner as the subduction criterion. It
can be used to determine the irreducible representa-
tions D{ which can be associated with a phase
transition between phases of given symmetry G
and H', or, to determine possible groups H' given
the group G and irreducible representation D{.

In the phase transition between G =0/ and
H'=C¢$,, for example, the corresponding permuta-
tional color space group is o/l/C 2;, /C} (0,Cy)s.

In this case coreH'=C;. Consequently by the
kernel-core criterion an irreducible representation
D{, associated with this phase transition must have
kerD{ =C}. Since C} is an equitranslational sub-
group of O}, the irreducible representation is a

k =0 irreducible representation Dg}"') of O] with

kerD(O :¥) =C}. This irreducible representation is

engendered, Eq. (45), by an irreducible representa-
tion I, of the point group O, with kerl", =C;.
From Table II, one finds that only irreducible rep-
resentations I', =I'} and I'? are such that
kerI', =C;. Consequently, only the irreducible rep-
resentations
D(()O_;4+), D(O(:Z,S‘l-) (57)
satisfy the kernel-core criterion for phase transi-
tions between phases of symmetry O; and CS,,.

The irreducible representations associated with a
phase transmon between phases of symmetry O/
and C4,, which satisfy subduction criterion are
given in Eq. (54); those which satisfy the kernel-
core criterion in Eq. (57). It follows that only the
irreducible representation D(O 4+) satisfies both of

these criteria and is the 1rreduc1b1e representation
associated with this phase transition.

We now apply kernel-core criterion to the second
example of the preceding section, that is, to deter-
mine the possible groups H' given G =0, and the

irreducible representation Dé°7'4+). Since the kernel

h
of the irreducible representation Dg:fH) is C}, by

the kernel-core criterion, C,~1 =coreH'=H, and H'
is an equitranslational subgroup of O/. This equi-
translational phase is then associated with a per-
mutational color point group Oy /H'/ C; (4,4"),
ie., with G = Oy, and H= C;. From Table I, sub-
section 32, one finds such permutational color
point groups with:

HAI:Ci)C§h’C12‘%’C3i’C4h . (58)

The groups H' which satisfy the kernel-core cri-
terion for a phase transition from a phase of sym-
metry G =0, associated with the irreducible repre-
sentation D (04+) aredl;

Ci ’C2h’c2h’c§ivc‘?h . (59)

It follows from Egs. (55) and (59) that only those
subgroups H' listed in Eq. (59) satisfy both the
subduction criterion and kernel-core criterion for
this phase transition.

D. Chain subduction criterion
The chain subduction criterion’~” is a condition
restricting the subgroups H' of G which can be the
symmetry group of a low-symmetry phase in a
phase transition associated with an irreducible rep-
resentation Df from a high-symmetry phase of
symmetry G: Let H) be a subgroup of H} which
in turn is a subgroup of G, i.e,, H) CH]; CG. In
addition, let the reduced form of the subduced rep-
resentation D |H; and D{ H, be given by

D{IH' =3(DH, 11)";)1);',,l , (60)
i
Di\Hy =3\ (DL H) |D,",3 )Dié . (61)
J
If
(D§ \H, |D1£)=( LUH ]DH,) (62)
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then in the phase transition from the phase of (DL VHY ID111’ )>(D§LH |D11{, ), (63)
. . . o 2 1

symmetry G associated with the irreducible repre-

sentation D},H is eliminated as a possible sym-

metry group of the low-symmetry phase. If

then the subgroup H} is not eliminated.
Using Eqgs. (52), Egs. (62) and (63) can be writ-
ten, respectively, as

TABLE II. Kernels of the irreducible representations of point groups: List of the 32 point groups G and their ir-
reducible representations I', are given in the first column and row, respectively. Symbols and enumeration of the ir-
reducible representations are that of Ref. 63. The kernel of the irreducible representation T', of the point Gis given at
the intersection of the column below I', and the row alongside G:

T, r, s r, s | 3
T Ty T} T} r# r#
G 'y ry 'y ry s I's
Cl Ci
¢
3 C, C, C,
4 C; C C,
5 Con Cop o
C2 Cs
6 D, D, cy cy o
7 Co Ca c c? cr
8 Dy Dy, c% c5 cs
D, cy) cs) cs
9 C, C, C, C, C,
10 Ss Sa C, C, C,
11 Cin Cin Con (e G
C, S4 Cs C,
12 D, D, C, D2 D2 lof
13 Ca Ca C, cir? cp®? C,
14 Dy Dy Sa D, Cyy C
15 Dy Dy, Cun D52 D52 G
D, Cy D5? D™ c?
16 c c, G c
17 (&7 Cy G G
C; C, C,
18 D, D, c c
19 Cs, Cs, Cs C,
20 Dy D3y Cy G
D; Cy C,
21 Cs Cs C, C, C; C, C
22 Cs Csy, Cs Cs Cs (& (o
23 Cen Cen Con Con Cy G C;
Cs G c, Cy C, C,
24 Ds Ds Cs DY D) C cy
25 Ce Cey Cs Ciyy) Ciex") lof c®
26 Dy, Dy, Cip D; Cs, of c®
27 Dy, Dgy, Cen DY) D" G c%)
Dy Ce» Dy D" c? cy
28 T T D, D, c
29 T T, Dy, Dy, G
T D, D, C,
30 o 0o T D§») (o c
31 T, T, T Di»? C, lof
32 0, 0, T, D&»? G G

(0] T,] D(zx'y’Z) Cl C 1
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(Dg? | D§)=(Dg' | DY), (64)

H ; H :
(Dg* | DE)>(Dg ' | D) . (65)

D "is the permutation representation, Eq. (24), as-
sociated with the permutational color group
G/H'/H (4,4"),. For equitranslational phase
transitions, using Eqgs. (47), Egs. (64) and (65) be-
come

(Dg*|D4)=(Dg ' | DY), (66)
(Dg*|D})>(Dg ' | DY), (67)

where Dg "is the permutation representation asso-
c/i\atgg with the permutational color point group
G/H'/H (4,A"),. The values of all coefficients in
Eqgs. (66) and (67) are those tabulated in Table I.

We have applied the chain-subduction criterion
to determine all equitranslational phase transitions.
For a given irreducible representation

Dg"'=GX11G=T,11G

of a space group G, the equitranslational subgroups
H' of G which satisfy the chain subduction cri-
terion, Egs. (62) and (63), have been determined us-
ing Egs. (66) and (67) and can be found in Table I:
If the coefficient

(Df'|T,)=(D§ | DG

at the intersection of the I', th column and the row
alongside the permutational color point group
G/H'/H (4,4"), is marked with an asterisk, then
(a) A’ is a subgroup of G which satisfies the chain
subduction criterion for the irreducible representa-
tion [, and (b) H' is an equitranslational sub-
group of G which satisfies the chain subduction
criterion for the k =0 irreducible representation
.D(GO’V)-

Those subgroups A’ of point groups G which
satisfy the chain subduction criterion for some ir-
reducible representation I, coincide with the pos-
sible low-symmetry point groups tabulated by
Janovec, Dvorak, and Petzelt.’> Those equitransla-
tional subgroups H' of space groups G which satis-
fy the chain subduction criterion for some irreduci-
ble representation Dé;o"') coincide with the equi-
translational epikernels derived by Asher.>

As an example, we shall determine the equi-
translational subgroups H' of G =0, which satisfy
the chain subduction criterion for the £ =0 irredu-
cible representation

DY+ =1t 110]

In Table I, subsection 32, in the column under I'},
one finds coefficients with an asterisk in rows
alongside permutational color point groups with

’.

Ci’C§%7C3i:C4h . (68)

Consequently, the equitranslational subgroups H'
of O; which satisfy the chain subduction criterion

for the irreducible representation D'%*+) are’!

o)
CiI?C%iuC%i’Cgh . (69)

These groups are a subset of those which satisfied
the kernel-core criterion, Eq. (59), and the subduc-
tion criterion, Eq. (55).

E. Tensor field criterion

A phase transition in a crystal is a result of a
change in some physical property of the crystal.
We describe the physical property by a g-
component tensor function .77 (r), here called a ten-
sor field. The components of the tensor field are
T ia=T (rj)g, a=1,2,...,q, for all atomic posi-
tions r;. The components of the tensor field
transform under elements of the space group G of
the crystal according to the in general reducible
representation®®:

DEF=DIxDgF™ . (70)

We shall refer to the representation Dg" as the ten-
sor field representation. The components .7 ;,, for
fixed i and a =1,2,.. .,q, transform according to
the g-dimensional tensor representation DE. The
permutation representation DE™ describes the per-
mutations of the atomic positions of the crystal
under elements of the space group G.

The tensor field criterion is a condition which
restricts the irreducible representations which can
be associated with a phase transition from a high-
phase-symmetry G of a given crystal”*%: An ir-
reducible representation D{ associated with a
phase transition from a given crystal of symmetry
G and due to a change in a physical property
described by a tensor field .77(r) with tensor repre-
sentation D&, must be contained in the tensor field
representation DJF, Eq. (70). That is,

DEF=S(DIF | D)DE, with (DEF | DE)5£0 . (T1)
i
Because the tensor representation D& describes
only the rotational properties of the components of
the tensor, it contains only k =0 irreducible repre-
sentation D&’ of the space group G. From Eq.
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(70) it follows that the k dependence of the irredu-
cible representation D{ contained in the tensor
field representation DZF, Eq. (71), is the same as
the k dependence of the irreducible representations
contained in the permutation representation D&™.

To determine the irreducible representations con-
tained in the permutation representation D&™, it
is advantageous to partition the crystal of space-
group symmetry G into simple crystals.'> Each
simple crystal consists of all atoms whose atomic
positions can be obtained by applying all elements
of the space group G to any one atomic position r.
The simple crystal is said to be generated by G
~ from r. The elements of G permute atoms of each
simple crystal among themselves. Consequently,
the permutation representation of the atomic posi-
tions of a crystal is the direct sum of the permuta-
tion representations of the constituent simple crys-
tals.

For a simple crystal generated by G from r;, the
permutation is given by

DE™=Dg "'=D, 16, (72)
where S(7,) is the subgroup of all elements g of G
such that gry=r;. The group S(r;) is called the
site subgroup of the space group G at r;.>* Conse-
quently, the tensor field representation, Eq. (70),
for a simple crystal generated by G from r; can be
written as

S(
DIF—DIxD5"" . (73)

In the case of equitranslational phase transitions,
the irreducible representation D{ associated with
the phase transition is a k =0 irreducible represen-
tation DY, Eq. (45), of the space group G. The
irreducible representation D!, must then be one of
the k =0 irreducible representations contained in
the tensor field representatlon DEF. The number

oF | D)) of times DS is contained in the
tensor field representation, is, by Eq. (36), equal to
the number (DTF | D) of times the 1rredu01b1e rep-
resentation D" of the point group G is contained
in

DF=D}xDZ(ry). (74)

§(r1) is the site point group of 7;.

As an example, consider equitranslational mag-
netic phase transitions in a crystal with the garnet
structure. The space group G =0,:° and the tensor
representation D¢ is the axial vector representation
I'f. The atoms occupy the 6(a), 24(c), and 24(d)
positions® with the respective site point groups

S(r))=Cs;, S(r,)=D¥®®) and S(r;)=S,.
Hence, there are three simple crystals. The irredu-
cible representations of the point group O, con-
tained in the representation Dg(’), Eq. (74), for
these three simple crystals are found in Table I,
subsection 32, lines 32.20, 32.10, and 32.8:

C,.
Dy)'=T{ ®TF @I ®T%

D,(z,xy,Xy)
Do} =Iferierter;er; ors,

S
Do, =Tf®Ifol{®r; ®ry oI5 . (75)

From Eq. (74), the irreducible representation con-
tained in the tensor field representation Dg" are,
for the three simple crystals,

Dg, (a)=T{ ® T ®2I'f @3} @ 3r¢
Dg (c)=TF @T{ ©3I{ @2I'f oIy

®T3 ®3T; ®2rI5 , (76)
Do, (d)=TT @TT @3I{ ®2rf oIy

&7 ®2I;7 ®3I5 .

It follows that irreducible representations

Déolg' =T, listed in Eq. (76) satisfy the tensor field

criterion for equitranslational magnetic phase tran-
sitions on the corresponding simple crystals.

Tables of the irreducible representations con-
tained in DEF , Eq. (74), for all crystallographic
point groups G and subgroups S(r), in the case of
the axial vector tensor representation, have been
given by Kovalev.’ Berenson, Kotzev, and Litvin®’
have tabulated the irreducible representations in
the cases of the axial and polar vector representa-
tions, the symmetrized square of the polar vector
representation, and the product of the axial and
polar/vector representations.

F. Landau stability criterion

The Landau stability criterion is a condition re-
stricting the irreducible representations which can
be associated with a continuous phase transiton’:
The symmetrized cube of an irreducible representa-
tion D¢ associated with a continuous phase transi-
tion from a high-symmetry phase of symmetry G
must not contain the identity representation D¢ of
G,

(D& )i3y=2((DE)3) | D&IDE,

with ((D{)s) | DE)=0. (77)
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An irreducible representation D¢ which satisfies
this condition is called a “Landau-active represen-
tation.”

The theory of permutational color groups allows
one to determine the Landau-active representations
of a large class of groups simultaneously: Let
K =kerD}; be the kernel of the irreducible repre-
sentation D¢, and G /K the factor group of G with
respect to K. Then D{ is engendered by a faithful
irreducible representations D sk of the factor
group G /K,

D{=D§ k111G . (78)
According to Eq. (40),
((D§)3) | Dg)=((D k)3 | DG sx) - (79)

Consequently, the irreducible representation Df of
G is Landau active if and only if it is engendered,
Eq. (78), by a Landau-active faithful irreducible
representation D§ sk of the factor group G/K
where K =kerDé:.

Equation (79) allows one to simultaneously
determine whether or not all irreducible representa-
tions of groups G engendered by the same faithful
irreducible representation D{ ,x of isomorphic fac-
tor groups G /K are Landau active. For example,
the kernel of the one-dimensional real alternating
representation of all groups G is a subgroup K of
index two. This alternating representation is
engendered by the alternating representation D¢ ¢
of the factor group G/K~C,. Since the alternat-
ing representation of C, is Landau active, the one-
dimensional real alternating representation of all
groups G is Landau active. This is the well-known
subgroup of index two theorem.’

In the case of k =0 irreducible representations
D{ =DV of a space group G, since the subgroup
of primitive translations is contained in K =kerD{;,
all factor groups G /K are isomorphic to some
crystallographic point group:

DYV =D¢ k116G . (80)

The irreducible representation D¢ k is a faithful
irreducible representation of the point group G /K.
Consequently, to determine which irreducible rep-

resentations D", satisfy the Landau stability cri-

terion, it is sufficient to determine which faithful
irreducible representations of the crystallographic
point groups satisfy this condition.

There are only 12 factor groups G /K with a to-
tal of 14 physically irreducible*® representations.
Of these, only eight factor groups have at least one
Landau-active faithful physically irreducible repre-
sentation.® These factor groups and their
Landau-active faithful physically irreducible repre-
sentations are listed in Table III. Only these ir-
reducible representations can engender Landau-
active k =0 irreducible representations D" of a
space group G.

We have determined all Landau-active k =0 ir-
reducible representations using Tables II and III
and Eq. (80). Each irreducible representation
D" is engendered by, Eq. (45), an irreducible
representation I', of each point group G. Those
irreducible representations I', listed in Table I with
a superscript “s”, i.e., as °T",, are not Landau active
and do not satisfy the Landau stability criterion.
Those irreducible representations listed without the
superscript s are Landau active.

For example, for G =0y, from Table I, subsec-
tion 32, all irreducible representations I',, except
I'T, I'f, and I'?, satisfy the Landau stability cri-
terion. Consequently, not all irreducible represen-

tations D(oc:}’(}’ ) that are engendered by irreducible

representations I', of O, which satisfy the tensor
field criterion for equitranslational magnetic phase
transitions in garnet, Eq. (76), are Landau active.

The irreducible representations D (()(:},01 + D 32'3 +)

and D(oo,’o5 *+) are not Landau active.
h

)

G. Lifshitz homogeneity criterion

The Lifshitz homogeneity criterion is a condi-
tion restricting the irreducible representations
which can be associated with a spatially homogene-
ous continuous phase transition>>>>°: The an-
tisymmetrized square of an irreducible representa-
tion D{ associated with a continuous phase transi-
tion from a high-symmetry phase of symmetry G

TABLE III. Landau-active faithful irreducible representations of factor groups G /K iso-
morphic to crystallographic point groups: Physically irreducible representations are given in
parenthesis. Enumeration and symbols I, for the irreducible representations are taken from

Ref. 63.
G/K C, C, Cs D, D¢ T, o Oy
D{ I, (I'3,Ty) (Ts,Tg) Ts T's ry Ty r;y, 05
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must not contain an irreducible representation in
common with the irreducible representations con-

tained in the polar vector representation D¢ of G:
If

(Dé)[z]zz((Dé)m | D&DE 81)

then for all DG such that ((D§)py;| Dé)740, we
must have (D& | D§)=0.

The k =0 irreducible representation D"’ of a
space group are by Eq. (45), engendered by an ir-
redumble representation D" =T, of the point
group G satisfies the LlfShltZ homogeneity cri-
terion if and only if the irreducible representation
I, or physically irreducible representation
(T, +T%) of G satisfies the criterion. In Table I
we have denoted by a superscript “A”, i.e., I‘V or
(T', +T%)*, those irreducible and physically irredu-
cible representations of the crystallographic point
groups G which do not satisfy the Lifshitz homo-
geneity criterion.

VI. CLASSIFICATION OF PHASE TRANSITIONS

Permutational color groups can be used in a
classification of all continuous phase transitions.
Let G be the symmetry group of the high-
symmetry phase and {H; ,H3, ...} the set of all
subgroups of G. According to the subgroup cri-
terion, the low-phase-symmetry group is in this set.
A phase transition between G and H; is said to be-
long to the equivalence class G/H'/H (4,4'), of
permutational color groups if the color group
G/H; /H (4,4'), belongs to that class of color
groups. That is, the phase transition is said to be-
long to that equivalence class if there is an element
8 €G such that H =g;H'g; ™.

In phase transitions from a high-symmetry
phase of symmetry G associated with a single ir-
reducible representation D¢, if the phase transition
from G to H; satisfies all group-theoretical criteria
for a continuous phase transition, then all phase
transitions from G to conjugate subgroups of H;
in G also satisfy all group-theoretical criteria. All
phase transitions from G to conjugate subgroups
H; in G are said to be equivalent and are con-
sidered as a single phase transition. With our de-
finition of equivalence classes of permutational
color groups (see Sec. III C), there is a one-to-one
correspondence between equivalent phase transi-
tions from G and equivalence classes of permuta-
tional color grops G/H'/H (4,4'),.

For example, consider the phase transitions be-
tween phases of symmetry G =0, and H'=C,,.

There are nine isomorphic subgroups C,, of O, di-
vided into two classes of conjugate subgroups of
Oht

C;h = { C’Z‘h ’ C{h ’ C%h ] ’ (82)

x XZ XZ Z Z
C3={C%,C5,C5%,C5,C%,Ch} .

The corresponding classes of permutational color
point groups are represented (see Table I,) by the
following groups:

32.180,/C5,/C; (0,C%)y3 (83)
32.1904/C%/C; (0,C?)y; .

All nine phase transitions between O), and C%,,

i =x,9,2,Xy,. . .,yZ, are classified under the two per-
mutational color groups in Eq. (83). These phase
transitions are considered as two nonequivalent
transitions. The low-symmetry phase is considered
to have several equivalent “domains”, three
domains in the former, and six in the latter.

All phase transitions associated with the class of
permutational color groups 32.19 [Eq. (83)], are as-
sociated with the irreducible representation I'} of
0, satisfy all group-theoretical criteria of Sec. V,
and can be continuous phase transitions. Those
phase transitions associated with the class of per-
mutational color groups 32.18 and I'f do not satis-
fy the chain subduction criterion and are not con-
tinuous phase transitions.

A second classification of phase transitions
based on permutational color groups uses the con-
cept of “exomorphism” of phase transitions.*” ¢
All phase transitions associated with classes of per-
mutational color groups G/H'/H (4,A'), with the
same permutation group P =(A4,4’), are said to be-
long to the same type of exomorphic phase transi-
tions. This classification follows from Eq. (37):
The permutation representation DY "of all permu-
tational color groups G /H'/H (4,A'), with the
same permutation group P =(4,4’ ) ~are engen-
dered by the same representation DA

All phase transitions belonging to the same exo-
morphic type have similar properties.*”% In all
phases transitions from high-symmetry phases of
symmetry G belonging to the same exomorphic
type, the Landau-active irreducible representations
D¢ are all engendered by the same Landau-active
faithful irreducible representations D} contained in
Df.

For example, all phase transitions between
groups G and subgroups H' of index two in G be-
long to a single exomorphic type, and are associat-
ed with classes of permutational color groups with

20,23



P =(C,),. The Landau-active alternating irreduci-
ble presentations of the groups G associated with
these phase transitions are all engendered by the
Landau-active faithful alternating irreducible rep-
resentation of C,. All equitranslational phase tran-
sitions belong to 45 types of exomorphic phase
transitions*’ corresponding to the 45 transitive
groups of permutations (4,4'), given in Ref. 20,
and found in Table I.

The classification of phase transitions into exo-
morphic types is useful in determining the proper-
ties of classes of phase transitions. Consider, for
example, the Landau subgroup of index-three con-
jt:cture,3 that there are no continuous phase transi-
tions between phases of symmetry G and sub-
groups H' of index three in G. The classification
of phase transitions into exomorphic types provides
an additional proof®? to this conjecture: All
phase transitions between phases of symmetry G
and subgroups H' of index three belong to two ex-
omorphic types: P=(D;,C,);=S3 and
P =(C;3);CS;. Irreducible representations associ-
ated with these phase transitions are, by the sub-
duction criterion, contained in permutation repre-
sentations D " which in turn are engendered by ir-
reducible representations contained in Dj . Since
D,f; =I+T; and Dg; =TI'}+(I',+T;), and since
none of these irreducible representations satisfy the
Landau stability criterion, no irreducible represen-
tation in any D¥ "is Landau active. Consequently,
there are no continuous phase transitions between
phases of symmetry G and subgroups H' of index
three in G.
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APPENDIX A: PROOF OF KERNEL-CORE
CRITERION

Consider a phase transition between phases of
symmetry G and H' associated with an irreducible
representation D§. The density function p,(r) of
the low-symmetry phase, Eq. (49), is then written
as

pi(r)=po(r)+ 3 ch Wi (r) . (A1)

The functions W}, (r) are basis functions of the ir-
reducible representation Df;. Since H' is the sym-
metry group of p,(r) and because, by definition, all
elements of the kernel of D{ leave all basis func-
tions W, () simultaneously invariant, we have

kerDL CH' . (A2)

That is, the kernel of the irreducible representation
is a subgroup of the low-phase-symmetry group
H'.

From Eq. (46), the irreducible representation D§
is contained in the permutation representation Dg B
Also from Eq. (46) it follows that the kernel of
DY is the intersection of the kernels of all irredu-
cible representations D} contained in DZ g

kerD¥ = N kerD§ . (A3)
i

In particular, for the irreducible representation D§
it follows from Eq. (A3) that

kerDZ' C kerD{, . (A4)

The kernel of D&’ is a subgroup of the kernel of
D Since the kernel of the permutation represen-
tation D§ is by Eq. (14) the group H =coreH’, we
have from Eq. (A4) that

coreH'C kerD{; . (AS)
Combining Egs. (A2) and (AS5) gives
coreH'C kerD: CH' . (A6)

Finally, since kerD{ is an invariant subgroup of
G contained in H', and coreH' is the maximal in-
variant subgroup of G contained in H’, it follows
that coreH' =kerD{, which proves the kernel-core
criterion, Eq. (56).
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