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Abstract 

A group-theoretical method is presented to determine 
the tensorial classification of ferroic crystals with 
respect to an arbitrary macroscopic tensorial 
property. This method is used to derive tables of the 
tensorial classification in the special case where the 
components of the tensorial property transform as a 
single irreducible representation of the prototypic 
point group. It is also shown how these tables facili- 
tate implementation of this method in the general 
case. Examples are given of the application of this 
method and the use of these tables in determining 
the tensorial classification of ferroeleetric and 
gyrotropie ferroic crystals. 

I. Introduction 

A ferroic crystal contains two or more equally stable 
domains of the same structure but of different spatial 
orientation. These domains, or orientation states, can 
coexist in a crystal and may be distinguished by the 
values of components of certain macroscopic 
tensorial properties of the domains. Under a suitable 
driving force, the domain walls can be moved and 
the crystal switched from one orientation state to 
another (Aizu, 1970, 1972, 1973). Crystals in which 
the domains may be distinguished by spontaneous 
polarization, spontaneous magnetization and spon- 
taneous strain are called primary ferroic crystals and 
named, respectively, ferroelectrie, ferromagnetic and 
ferroeleastic crystals. Switching in these ferroic crys- 
tals is accomplished, respectively, by an electric field, 
a magnetic field and a mechanical stress. Crystals 
whose domains are characterized by differences in 
the dielectric permittivity tensor and piezoelectric 
tensor are examples of secondary ferroie crystals 
named ferrobielectrie and ferroelastoeleetric crystals 
(Aizu, 1973; Newnham & Cross, 1976). Switching is 
accomplished by an electric field in the former, and 
by a combination of an electric field and a mechanical 
stress in the latter. Ferroie crystals have been dis- 
cussed by Newnham (1974), and secondary ferroic 
crystals in particular by Aizu (1973), Newnham 
& Cross (1974a, b) and Newnham & Skinner 
(1976). 
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Aizu (1970, 1976a, b) has introduced two point- 
group-classification schemes for ferroic crystals, the 
classes of which are named respectively 'species' and 
'subspecies' of ferroic crystals. These classifications 
are based on relationships between the point-group 
symmetries of the domains of a ferroic crystal and 
the point-group symmetry of the non-ferroic, or 'pro- 
totypic' phase of the crystal. In addition, each class 
of ferroic crystals has in turn been given a tensorial 
classification according to a macroscopic tensorial 
property's ability to distinguish between the domains. 
Aizu has tabulated the species of ferroie crystals, 
using magnetic point groups, and the tensorial 
classification of ferroelectric, ferromagnetic and 
ferroelastic crystals (Aizu, 1970; see also Cracknell, 
1972). 

In this paper, we shall limit ourselves to consider- 
ation of the tensorial classification of non-magnetic 
ferroie crystals. We shall present a group-theoretical 
method to determine the tensorial classification of all 
such ferroie crystals with respect to an arbitrary 
macroscopic tensorial property. In § II we discuss 
point-group classifications of crystals with domains 
and list four possible point-group classifications. Phy- 
sical reasons are then given for our choice of one of 
these, the classification corresponding to Aizu's sub- 
specie classification, as the point-group-classification 
scheme for ferroic crystals to be used in this paper. 
The tensorial classification is then defined. The 
criterion to determine the tensorial classification of 
a ferroic crystal in the general case of an arbitrary 
macroscopic tensorial property is given in terms of 
the point groups of the point-group classification of 
the ferroic crystal. 

In § III, a group-theoretical computational method 
to determine the tensorial classification of a ferroic 
crystal and an arbitrary macroscopic tensorial 
property is given. This method is based on the calcula- 
tion, for a given point group, of the number of 
independent components of the tensorial property, 
and is related to the chain-subduetion criterion of 
continuous phase transitions (Goldrich & Birman, 
1968; Jarie & Birman, 1977). Tables are presented in 
§ IV to facilitate implementation of the method of 
§ III. Examples are given of the use of these tables 
in determining the tensorial classification of ferroelee- 
tric and gyrotropie ferroic crystals. 
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II. Classifications of ferroic crystals 

We shall first discuss possible point-group classifica- 
tions of ferroic crystals. We shall then choose one of 
these as the point-group-classification scheme of fer- 
roic crystals which we shall use in the remainder of 
the paper. We then review the additional tensorial 
classification of ferroic crystals. 

A .  P o i n t - g r o u p  c l a s s i f i c a t i o n s  

Let G denote the point-group symmetry of the 
non-ferroic phase of a ferroic crystal, and let H, a 
proper subgroup of G denote the point-group sym- 
metry of one of the domains of the ferroic crystal. 
The number of domains and the point-group sym- 
metry of each domain can be determined from the 
two point groups G and H. Let IGI and IHI denote the 
order of the groups G and H, respectively. The number 
n of domains of the ferroic crystal is given by n = 
IGI/IHI. The point group G can be written in a coset 
decomposition with respect to the proper subgroup H: 

G = H +G2H + . . . + G , H .  (1) 

The point-group symmetry of the ith domain is the 
point group Hi = G i H G 7 ,  ~, a conjugate subgroup of 
H in G where Gi is the ith coset representative in (1). 
The choice of the point group H is arbitrary in the 
sense that the point-group symmetry H of one domain 
may be replaced by the point-group symmetry Hi of 
another domain. The number of domains and their 
symmetry can also be determined from G and Hi. 

To each ferroic crystal one can then associate a 
pair of point groups, the non-ferroic point group G 
and the point group H of one of its domains, which 
characterizes the point-group symmetries of the fer- 
roic crystal's domains. Consequently, each ferroic 
crystal has been assigned a 'ferroic symbol' GFH 
consisting of a symbol F to denote 'ferroic' and the 
two point groups G and H (Aizu, 1970). 

A list of ferroic symbols can be compiled by first 
taking one point group G from each of the thirty-one 
classes of po{nt groups excluding the identity point 
group. Each of these thirty-one point groups is then 
combined in turn with each proper subgroup H of G 
to form a ferroic symbol G FH. The identity point 
group has been excluded as it has no proper sub- 
groups. In such a manner one can compile a list of 
433 ferroic symbols. 

We shall assume in this paper, the usual implicit 
assumption, that the non-ferroic point G of a ferroic 
crystal has been chosen as one of the thirty-one point 
groups G used in compiling the above list of ferroic 
symbols. Consequently, the ferroic symbol associated 
with any ferroic crystal can be found in this list of 
433 ferroic symbols. 

The classifications of ferroic crystals which we dis- 
cuss below are defined in terms of the classifications 

of the proper subgroups H of a point group G. Since 
each pair of point groups G and H determines a 
ferroic symbol GFH, we shall speak of classifications 
of ferroic symbols instead of the proper subgroups 
H of G. Four possible classifications of ferroic sym- 
bols are as follows. Two ferroic symbols GFH and 
GFH' are said to belong to the same class of ferroic 
symbols if 

(cl) H = H' the ferroic symbols are identical; 
(c2) H and H' are conjugate subgroups of G. There 

is an element G of G such that G H G  -~ = H'; 
(c3) there is an element R of the three-dimensional 

rotation group R, not necessarily contained in G, such 
that R G R  -~ = G and R H R  -~ = H'; 

(c4) H and H' belong to the same class 
of point groups. There is an element of R such 
that R H R  -~ = H'.  

According to which of the four criteria is used, there 
are, respectively, 433,247,212 or 190 classes or ferroic 
symbols. 

These four classifications of ferroic symbols corres- 
pond to Aizu's four classification of the proper sub- 
groups of the thirty-one point groups G into, respec- 
tively, 'rigorous', 'subspecific', 'specific' and 'unique' 
classes of ferroic point groups (Aizu, 1979). Similar 
classifications of pairs of point groups have been 
considered in the context of 'color' point groups 
(Opechowski, 1980). Considering one point group G 
from each of the thirty-two classes of point groups, 
all proper and improper subgroups H of G, and the 
criteria (c2) and (c3) above, lead respectively to 279 
(Litvin, Kotzev & Birman, 1982) and 244 (Koptsik & 
Kotzev, 1974a, b; Shubnikov & Koptsik, 1974; 
Harker, 1976) classes of 'color' point groups. 

To each ferroic crystal we assign the ferroic symbol 
GFH, where H is the point-group symmetry of one 
of the ferroic crystal's domains. Classifications of 
ferroic crystals are defined in terms of the ferroic 
symbols assigned to the ferroic crystals. Two ferroic 
crystals with assigned ferroic symbols GFH and 
GFH' are said to belong to the same class of ferroic 
crystals if and only if GFH and GFH' belong to the 
same class of ferroic symbols. Consequently, there 
are 247, 212 or 190 classes of ferroic crystals according 
to which criteria, (c2), (c3), (c4), is used to classify 
ferroic symbols. The criterion (cl) does not define 
classes of ferroic symbols which can be used to 
classify ferroic crystals, since this would lead to a 
classification of ferroic crystals dependent on which 
domain's point group is used in the ferroic symbol 
assigned to the crystal. The class of ferroic crystals 
to which a specific ferroic crystal belongs, in the three 
classifications (c2)-(c4) defined above, does not 
depend on the choice of the domain whose point- 
group symmetry H is used to characterize the ferroic 
crystal. Aizu (1976a, b, 1979) refers to the 247 classes 
of ferroic crystals, using criterion (c2), as subspecies 
of ferroic crystals, and refers (Aizu, 1969, 1970, 1972) 
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to the 212 classes of ferroic crystals, using criterion 
(c3), as species of ferroic crystals. 

In the remainder of this paper we shall use the 
terminology 'ferroic classes' to refer to the classes of 
ferroic crystals determined using criterion (c2). We 
shall also denote a ferroic class of crystals by the 
symbol GFH of the class of ferroic symbols to which 
the ferroic crystals of that ferroic class are assigned. 
With this classification of ferroic crystals, a ferroic 
crystal of prototypic point group G belonging to the 
ferroic class GFH will have H as the point-group 
symmetry of one of its domains. Thus, a ferroic crystal 
belonging to the ferroic class GFH can always be 
characterized by the point groups G and H. 

R Tensorial classification 
The domains of a ferroic crystal can possibly be 

distinguished by the values of the components of a 
macroscopic tensorial property associated with each 
of the domains. Whether or not one can distinguish 
some or all of the domains in such a manner  has led 
to the additional tensorial classification of ferroic 
crystals (Aizu, 1969, 1970). 

Consider a ferroic crystal of the ferroic class GFH,  
and a macroscopic tensorial property represented by 
a q-component  tensor T. We shall denote the com- 
ponents of the tensor T by Tj, j = 1, 2 , . . . ,  q. The com- 
ponents of the tensor T transform under elements of 
the point group G as basis functions of a q- 
dimensional representation D r  of G, which we shall 
call a ' tensorial representation'  of G: 

C =Y, 7- Dr( G)kjTk. (2) 
k 

The tensorial representation D r is in general a reduc- 
ible representation of the point group G. The tensor 
T is said to be invariant under an element G of the 
group G if there exists a set { Tj} of non-zero values 
of the components Tj, j = 1, 2 , . . . ,  q such that GTj = 
Tj, j = 1, 2 , . . . ,  q. The tensor T is said to be invariant 
under a subgroup A of G, if there exists a set of 
non-zero components simultaneously invariant under 
all elements of A. 

Consider a ferroic crystal belonging to the ferroic 
class G F H, and a tensor T representing a macroscopic 
tensorial property invariant under H. We shall assume 
that the set {T j} of values of the components of T 
invariant under the point-group symmetry H of one 
of the ferroic crystals' domains is the most general 
set of values allowed by symmetry (Nye, 1964). The 
sets of values of the components of the tensor T 
characterizing the n domains of the ferroic crystal are 

{ Tj}, { G2 Tj}, . . . , {G,,Tj}, (3) 

where Gi, i = 2, 3 , . . . ,  n are coset representatives of 
the coset decomposition, (1) of G with respect to H, 
and the sets of values {GiTj}, i=2,3, . . . ,n  are 
obtained from the set of values { T~} using (2). 

Ferroic crystals are classified into one of three 
tensorial classes with respect to a tensor T according 
to one's ability to distinguish the domains by con- 
sidering only the values of the components of T. 
Ferroic crystals of a ferroic class GFH are said to 
belong to a 

(1) 'full '  ferroic class with respect to the tensor T 
if the sets of values of the components of T charac- 
terizing the n domains, (3), are all distinct; 

(2) 'partial '  ferroic class with respect to the tensor 
T if only m, 1 < m < n, of the sets in (3) are distinct; 

(3) 'null '  ferroic class with respect to the tensor T 
if all sets in (3) are identical. 

The terminology full, partial and null was intro- 
duced by Aizu (1969, 1970). 

III. Tensorial classes 

We present in this section a computational method 
to determine the tensorial classification of a ferroic 
crystal belonging to the ferroic class G FH with respect 
to a tensor T with components T i , j  = 1, 2 , . . . ,  q. Let 
D r  denote the tensor representation of the point 
group G defined in (2). We denote by r NG(A) the 
number of independent components of  the tensor T 
invariant under the subgroup A of G. This number 

T NG(A) is equal to the number of times the identity 
representation of A is contained in the subduced 

DG ~ A, that is in the tensor representa- representation 7 
tion D r  of G restricted to the elements of A. Denoting 
the character of the matrix 7 7- DG(G) by XG(G), the 
number 7- N r ( A )  of components of the tensor T 
invariant under the subgroup A of G is calculated 
from 

7- 1 ~A xr(A), (4) NG(A) = ~  

where the summation is over all elements of A. 
The tensorial classification of a ferroic crystal 

belong to the ferroic class GFH can be formulated 
in terms of the numbers 7" No(A): 

( T N I )  7- NG(H) = 0; 
(TN2) 7" 7- 7- , NG(H ) for all sub- NG(H)> N~(H) > 0 and 

groups H' of G which contain H as a proper subgroup; 
(TN3)  Nr(H)7" > 0 and Nr(H)T = NG(HT"' ') > NG(G)T 

for a proper subgroup H' of G which contains H as 
a proper subgroup; 

(TN4)  N r ( H ) > 0  and 7- r N~(H) = NG(G). 
In ( T N  1) there are no components of  the tensor T 

invariant under H and we consequently have a null 
tensorial class. The r N r ( H )  independent components 
of T invariant under H in case (TN2) are invariant 
under no additional elements of G, and we have a 
full tensorial class. In (TN3) the 7- Na(H)  components 
are invariant under additional but not all elements 
of G, hence a partial tensorial class. Finally, the 

T Na(H)  components invariant under H in (TN4) are 
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invariant under G and again we have a null tensorial 
class. 

The computations to determine the tensor classifi- 
cation of all ferroic classes for a given tensor T entails 

NG(A), (4), for all proper calculating the numbers r 
subgroups A of each of the thirty-one prototypic point 
groups G. The existence of tables of subduction num- 
bers NG(A) of irreducible representations of the point 
groups G (Birman, Berensen, Kotzev & Litvin, 1981 ; 
Litvin, Kotzev & Birman, 1981) simplifies this calcula- 
tion: the tensor representation DG r is in general a 
reducible representation of G, 

D~ = ~, aTF, (5) 

where the summation is over all irreducible rep- 
resentations Fi of G, and aT denotes the number of 
times the irreducible representation F~ of G is con- 
tained in the reduced form of the tensor representa- 
tion D~. The coefficients aT are calculated from 

1 a.T, :-C-~[ ~X: (G)X, (G) ,  (6) 

where x~(G) is the character of the matrix F~(G). It 
follows from (4) and (5) that 

T T i NG(A) = )-'. a, NG(A), (7) 
i 

where NG(A) is defined by 

NG(A) = ~-~ x,(A). (8) 

i NG(A) is the number of times the identity representa- 
tion of A is contained in the subduced representation 
F~ ~ A, the irreducible representation F~ of G restricted 
to the elements of the subgroup A of G. 

For an arbitrary tensor T, point groups G and 
proper subgroups A of G, the numbers T NG(A) can 
be calculated from (7). The coefficients aT can be 
calculated using (6), or by an alternative method given 
in Appendix I. The numbers NG(A), defined by (8), 
for all irreducible representations F~ of all point 
groups G and all subgroups A of G are known and 
have been tabulated (Litvin, Kotzev & Birman, 1982). 
To determine the tensorial classification of a ferroic 
crystal belonging to a ferroic class G FH with respect 
to a tensor T, one then calculates the T Nr (A)  for all 
subgroups A of G from (7) and applies the criteria 
( TN 1)-( TN 4 ). 

IV. Tables for tensorial classification 

Using the computational method of the previous sec- 
tion we shall tabulate below the tensorial classifica- 
tion of all ferroic classes GFH and tensors T whose 

DG is an irreduc- corresponding tensor representation r .  
ible representation of the point group G. We also 
show how these same tables can be used in determin- 

ing the tensorial classification for tensors T whose 
corresponding tensor representation D T is a reducible 
representation of the point group G. 

A. Irreducible tensor representation 

DG = Fi We assume that the tensor representation T 
is an irreducible representation of the point group G. 
The tensorial classification of all ferroic crystals 
belonging to ferroic classes GFH with respect to a 
tensor T with corresponding tensor representation 
D T = Fi has been tabulated.* In Table l we give the 
subtable for G = Oh. The tensorial classification has 
been determined using (7), the known values of 

i No(A)  (Litvin, Kotzev & Birman, 1982), and criteria 
(TN1).-(TN4). 

In each subtable corresponding to a prototypic 
point group G, see Table 1 for G = Oh, the columns 
are headed by a symbol for each irreducible rep- 
resentation Fi of G excluding the identity 
representation of G. The notation used for the irredu- 
cible representations is that of Koster, Dimmock, 
Wheeler & Statz (1963). The rows of each subtable 
are indexed by the subgroups H of G of all ferroic 
classes GFH. The tensorial classification of a ferroic 
class G FH with respect to a tensor T with a corres- 
ponding irreducible tensor representation D T = F~ is 
read off the tables as follows. 

(1) If F~ is the identity representation of G then all 
ferroic classes GFH are null ferroic classes. 

(2) If Fi is not the identity representation of G, 
then the tensorial classification of the ferroic class 
GFH is determined by the entry a t  the intersection 
of the F~th column and the Hth row. The ferroic class 
is a full, partial or null ferroic class if the entry is, 
respectively, the symbol F or P or if the entry is blank. 

For example, for the point group G = Oh and a 
polar vector tensor T, the tensor representation D T = 
F~. From Table 1 we have that OhFC~, OhFC~ y, 
r'~ l:'~xY z OhFC~, OhFC~vX, y) and r~ 12('~(xy, xy, z) ,-'h, '-20 are par- • _ / h Z  l... 3 , 

tial ferroic classes and OhFCl, OhFC z, OhFC xy, 
O pf,(xr,,~y.z) ~ cf ,  xrz and OhFC~,, are full ferroic h ~t '~"~2v , ~" /h  ~t ~ 3 v  

classes. The remaining ferroic classes OhFH are null 
ferroic classes. Interpreting the polar vector tensor as 
a ferroelectric tensor, one refers to the ferroic classes 
as ferroelectric classes, and to OhFC~, for example, 
as a partial ferroelectric class. In the terminology of 
Aizu (1970, 1976a, b), OhFC~ is referred to as a partial 
specie or subspecie of ferroics. 

Additional information is contained in these tables. 
If G FH is a partial ferroic class, then the tensor 
characterizing the domain of symmetry H is invariant 
under a larger subgroup H' of G. We shall refer to 

* The complete tables have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
39053 (24 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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Table 1. Tensorial classification of ferroic classes GFH with G = Oh 

The second column lists the proper subgroups H of  all ferroic classes GFH. The third column gives the number of  domains of  ferroic 
crystals belong to the ferroic class GFH. The entry at the intersection of  the Hth row and column under the F~th irreducible representation 
of  G determines the tensorial classification of  the ferroic class GFH with respect to a tensor representation F~. P and F denote partial 
and full ferroic classes, respectively, and, if the entry is blank, a null ferroic class. 

G 
O(~ Y. z ) 

n No F~- F~ F~ 

C~ 48 P P(l) P(I) 
C~ 24 e P(I) P(2) 
C~ 24 P P(1) P(2) 
C~ y 24 P(2) P(3) 
C~ xy 24 P(2) P(3) 
CXYZ 3 16 P P(4) 
C~ 12 P(2) P(2) 

12 P(2) P(2) 
SCt~'~Y) 12 P P(1) 
D ~zt~ xy''~y ) 12 P(2) 
g'~z, 12 P(2) 
f ~ x y , ~ y , z  ) ,--2v 12 P(2) 
OXYZ 3 8 
c~y 8 

z 
C!~xy.,~y ) 6 P(2) 

6 P(2) 
Ci 24 P P(I) F(I) 
C~h 12 P P(1) P(2) 
C ~  12 P(2) F(3) 
C XYZ 

3i 8 P F(4) 
z 6 P(2) F(2) 

C!z: ~y'~y) 6 P(2) 
DXYZ ~e d 4 
D~ ~y'~) 12 P P(1) 

Diz~lx, Y ) 12 P(2) 
D!hX.y ) 6 P(2) 

6 P F(I) 
D~h 3 F(2) 
T (~y'O 4 P 
T? "y'~) 2 
d x'y'') 2 
Tth ~y'z) 2 F 

r~ r ;  G G r ;  r ;  
P(l) P P P(I) F F 
P(2) P P P(I) P(I) P(I) 
P(2) F F 
P(3) P P(2) P(2) F 
P(3) P P(3) F Dl'lm(gy'xy'z)'l 't ~.~'2v / 

P(4) P P P(3) P(2) 
P P(2) P(I) 

P P(3) P(l) 
P(I) P(1) 

P(2) P P(2) P(1) 
P(2) P P(3) P(l) 
P(2) F(2) F 
P(4) P F(2) 
P(4) P F(3) 

F(I) 
F(l) 

F(I) 
P(2) 
F(3) 
P(4) 

F(2) 
F(4) 

P P F(1) 
P F(2) 

P F(3) 

P P 
F 

F 

the largest such subgroup H' of G as the invariance 
group H' corresponding to the tensor T and the partial 
ferroic class GFH. The invariance group H' can be 
determined from the tables. If 7- DG = F~ and the entry 
P is at the intersection of the Gth column and Hth 
row, then H' is the row index of the entry F in the 
Gth column. If the Gth column contains more than 
a single F entry, the entries P are supplemented with 
an additional index P(j), and H' is the row index of 
the entry in the Gth column denoted by F(j). In 
exceptional cases H' is given in parentheses following 
the entry P, that is, as P(H'). 

For example, in Table 1 for the partial ferroelectric 
class OhFC~, the entry at the intersection of the F4 
column and C~ row is P(1). In the F4 column, the 
entry F(1) is in the C~o row. Consequently, a polar 
tensor invariant under the subgroup H = C~ of G = Oh 
is in fact invariant under the larger subgroup H' = C~o 
of G =  Oh. 

B. Reducible tensor representation 

We assume that the tensor representation D ~  is 
reducible and that the irreducible representations Fj 
of G contained in the reduced form, (5), of the tensor 
representation are known. We define the set {F~} of 
irreducible representations as the set of  all irreducible 

representations of G excluding the identity rep- 
resentation, contained in the reduced form of the 
tensor representation. Each irreducible representa- 
tion/"j appears once in this set if the corresponding 
coefficient a T of (5) is equal to or greater than one. 

The tensorial classification of ferroic crystals 
belonging to the ferroic class GFH with respect to a 
tensor T with a reducible tensor representation is 
determined from Table 1 as follows. If the set {Fi} is 
empty, i.e. only the identity representation is con- 
tained in the tensor representation, GFH is a null 
ferroic class. If the set {Fi} is not empty, then there 
are four cases to be distinguished. To distinguish 
between these cases we define the set of entries as 
the set of  all P and F entries in the Hth row of the 
Gth subtable at the intersections of the columns cor- 
responding to all irreducible representations in {Fi}. 
The four cases are: 

(1) if the set of entries is empty, then GFH is a 
null ferroic class; 

(2) if at least one of the set of entries is an F, then 
GFH is a full ferroic class; 

(3) if the set of  entries consists of a single P, then 
GFH is a partial ferroic class; 

(4) if the set of entries consists of two or more P's, 
then one determines from the table the corresponding 
invariance groups H~, H i , . . .  and the intersection I 
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of these point groups. If I= H, then GFH is a full 
ferroic class, otherwise, GFH is a partial ferroic class. 

An example: gyrotropic ferroic classes have been 
discussed by Konak, Kopsky & Smutny (1978) and 
Wadhawan (1979). According to Wadhawan (1979), 
the ferroelectric phase of dicalcium strontium pro- 
pionate belongs to the ferroic class OhFC4, and OhFC4 
is a partial gyrotropic class. The optical gyration 
tensor is a symmetric second-rank axial tensor (Nye, 
1964). The tensor representation D r for the optical 
gyration tensor and G = Oh is, see Appendix 1, reduc- 
ible and D r  = F~- + F3 + F~-. From subtable G = O h 

of Table 1, for H = (?4 and the set {F~-, F3, F~-} of 
irreducible representations of G = Oh, the correspond- 
ing set of entries consists of two P's. The correspond- 
ing invariance groups are O and/94, and the intersec- 
tion ! of these two groups is Da. Since H = Ca is 
contained in I= 194, OhFCa is a partial gyrotropic 
class in agreement with Wadhawan (1979). 
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APPENDIX I 
Reduction of the tensor representation 

In this Appendix we discuss an alternative method 
to equation (6) to determine the coefficients air, the 
number of times the F~th irreducible representation 
of a point group G is contained in the reduced form, 
equation (5), of a tensor representation D r  of G. We 
shall limit our discussion to tensors whose transfor- 
mational properties under the full rotation group R, 
the group of all proper and improper three- 
dimensional rotations, are known. 

Let Da r denote the tensor representation of R 
defined by 

RTj = ~, D~(R)kjTk, (A-l) 
k 

where Tj, j =  1 , 2 , . . . ,  q, are the components of a 
tensor T. The tensor representation D ~ i s  in general 
reducible and 

Da r =  Y. bj/Yn, (A-E) 
J 

where b i denotes the number of times the irreducible 
representation /Ya of FI is contained in the reduced 
form of the tensor representation Dr .  The tensor 
representation D r  of a point group G is 

D r =  D~,I, G (A-3) 

equal to the tensor representation of R subduced onto 
G. From (A-2) and (A-3) it follows that 

D r  = E bj(D~a ~ G). (A-4) 
J 

The subduced representation/Tad G is in general a 
reducible representation of the point group G: 

DJa,l, G = ~, cj,F, (A-5) 
i 

and substituting into (A-4) we have 

D r  = Y. (~, bjcj,)Fi. (A-6) 
i 

Comparing this with (5), one has that the number aT 
of times the F~th irreducible representation of the 
point group G is contained in the reduced form of 
the tensor representation of G is given by 

aT = ~, bjcj,. (A-7) 

The computation of the coefficients air using (A-7), 
in place of (6) is simplified by the existence of tables 
of the coefficients b~ and cji. Koster, Dimmock, 
Wheeler & Statz (1963) have tabulated the coefficients 
cji, (A-5), for all irreducible representations /YR and 
all point groups G. The coefficients bj, see (A-2), for 
twenty-six tensor representations, corresponding to 
tensors of second, third and fourth rank whose com- 
ponents are of various intrinsic symmetry, have been 
tabulated by Tenenbaum (1966). 

For example, the optical gyration tensor is a sym- 
metric second-rank axial tensor (Nye, 1964). Equation 
(A-2) is then, according to the tables of Tenenbaum, 
D r = Do + D~-. For the point group G = Oh using the 
tables of Koster, Dimmock, Wheeler & Statz (1963), 
(A-5) for these two irreducible representations of R 
becomes Do,l, Oh = F-~ and D~- ~ Oh = F~ + F5. Con- 
sequently, using (A-7), the reduced-form equation (5) 
of the optical gyration tensor representation for the 
point group G = Oh is D r  = F~- + F3 + F5. 
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Abstract 

If a rocking curve is measured in symmetric Laue 
geometry for two different X-ray polarizations, and 
the incident beam meets the geometrical conditions 
for diffraction, i.e. the incident beam is much less 
divergent than the sample mosaic, then the intensity 
ratio Robs, for the intensities measured with each 
polarization, will depend upon the reflectivity at each 
point on the rocking curve. From the variation of Robs 
VS the observed intensity, lobs, the absolute reflec- 
tivities and secondary extinction can be determined. 
If absorption is properly treated, then all data taken 
in this geometry should lie on a single curve of Robs 
VS lobs. Failure to fit this curve is evidence that the 
sample has other processes occurring such as multiple 
scattering or primary extinction. 

Introduction 

A major advantage of high-intensity synchrotron X- 
ray sources, which have recently been constructed or 
will soon become operational, is the ability to vary 
the polarization of a monochromatic beam falling on 
a diffracting sample, while still keeping sufficient 
intensity for easy data collection. One use to which 
the polarization dependence can be put is in the study 

* On leave from the University of Missouri Research Reactor, 
Columbia, Missouri 65211, USA, now returned. 

of primary extinction (Suortti, 1982a, b), since the 
extinction length is inversely proportional to the 
polarization. A second advantage of the synchrotron 
source is the high intensity available in a very narrow 
angular and wavelength band. Unlike conventional 
X-ray sources, with synchrotrons it should be possible 
to restrict the divergence of the beam in both angle 
and energy, so that the divergence of the beam is less 
than that of the sample (for all but the most perfect 
specimens), while preserving reasonable intensity on 
the sample. 

In two recent papers (Yelon, van Laar, Kaprzyk & 
Maniawski, 1984; Yelon, van Laar, Maniawski & 
Kaprzyk, 1984) it has been shown that absolute reflec- 
tivity measurements with a beam meeting the above 
divergence conditions could give good secondary 
extinction corrections in polarized neutron scattering, 
free from any parametrization or fitting. In the present 
paper we propose an inverse method in which 
measurement of the intensity ratio for X-ray scattering 
with two different beam polarizations can be used to 
determine the absolute reflectivity as well as to give 
the secondary extinction corrections for a measured 
rocking curve. 

Theory 

The present method is based on the Zachariasen 
(1967) solutions to the intensity transfer equations 
(Darwin, 1922) in symmetric Laue geometry, which 
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