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An algorithmic method is presented to determine the irreducible representations that engender
the irreducible representations associated with phase transitions involving a change of symmetry
to a subgroup of index n. This method is based on the work of Ascher and Kobayashi [E. Ascher
and J. Kobayashi, J. Phys. C 10, 1349 (1977)] and the derivation of faithful irreducible
representations contained in the permutation representation of transitive subgroups of
permutation groups S, . Character tables of all such irreducible representations, and their
epikernels, associated with a change in symmetry to a subgroup of index n = 2, 3, 4, 5, and 6 are
given explicitly. The relationship to exomorphic types of phase transitions is then discussed. The
irreducible representations associated with the phase transitions O ) to C }, in BaTiO;and D §, to
D¢ in B-K,SO, are derived and it is shown that these two phase transitions belong to the same

exomorphic type.

I. INTRODUCTION

The use of group-theoretical methods to investigate
structural phase transitions was introduced by Landau’ over
forty years ago. In the Landau method of determining the
change of symmetry accompanying a phase transition, the
lower symmetry phase is described by a density function,
which is expanded in terms of basis functions of the irreduci-
ble representations of the higher symmetry phase. With the
coefficients of the density function expansion as variational
order parameters, a thermodynamic potential is constructed
and minimized to determine the form of the density function
and subsequently the symmetry of the lower symmetry
phase.>? The most extensive tabulations of changes in sym-
metry accompanying phase transitions derived using this
method have been given by Toledano and Toledano.*

A number of necessary group-theoretical criteria have
also been derived for use in determining the change in sym-
metry accompanying a phase transition.>>~ These include
the subduction criterion, chain subduction criteria, also
called the chain criterion,® the Landau criterion for contin-
uous phase transitions, and the Lifshitz homogeneity crite-
rion. Using some or all of these criteria, tabulations of possi-
ble lower-phase symmetries have been derived for some
phase transitions in crystals. For cases where the higher-
phase symmetry group is a cubic space group, such tabula-
tions have been given for O ) by Goldrich and Birman® and
Vinberg et al.,*° for O} by Jaric,” and for O ; by Sutton and
Armstrong'! and Ghozlen and Mlik.*? Recently a computer
program has been developed by Hatch and Stokes'? and all
the above mentioned criteria have been applied to all 230
space groups.

In parallel with the application of the Landau method
with minimization, and the development and application of
group-theoretical criteria, investigations into general theo-
rems that apply to the change in symmetry accompanying a
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phase transition have also been developed. Such general
theorems date back to the original papers of Landau.’ It was
shown by Landau that the irreducible representation asso-
ciated with a phase transition, where the lower-phase sym-
metry group is a subgroup of index 2 of the higher-phase
symmetry group, is a one-dimensional alternating irreduci-
ble representation. It was also conjectured that no phase
transition between a higher-phase symmetry group and a
lower-phase symmetry subgroup of index 3 is continuous.
This so-called subgroup of index 3 theorem was shown to be
valid for special cases by Anderson and Blout'* and Boc-
cara.'® General proofs were subsequently given by Meisel,
Gray, and Brown'6 and Brown and Meisel."” It has also been
shown that the Landau subgroup of index 3 theorem cannot
be extended to a subgroup of index » theorem with n#3."8
Continuing the investigation into the group-theoretical
aspects of phase transitions, Ascher and Kobayashi'® have
introduced the so-called “inverse Landau problem.” This
problem is to determine the irreducible representation asso-
ciated with a phase transition between a given higher-phase
symmetry group and a given lower-phase symmetry group.
Following the work of Gufan and Sakhnenko?” and Ascher
and Kobayashi,'® Kopsky has introduced the concept of
“exomorphic” types of phase transitions.”’~?* For example,
all phase transitions between a higher-phase symmetry
group and lower-phase symmetry subgroup of index 2 be-
long to a single exomorphic type. Such a concept stresses the
mathematical similarity among phase transitions and can be
used in the study of the general properties of phase transi-
tions. Two phase transitions belonging to the same exomor-
phic type have, for example, the same set of order parameters
and the same mathematical form of the thermodynamic po-
tential. The transitions can, however, differ in the physical
interpretation of the order parameters and corresponding
terms in the potential can be of different physical impor-
tance.?? The concept of exomorphic types of phase transi-
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tions can also be used as a basis of proofs of general theorems
concerning phase transitions as, for example, in the alternate
proof of the subgroup of index 3 theorem.?*

In this paper we continue the study of exomorphic types
of phase transitions. In Sec. II we briefly review the method
of Ascher and Kobayashi and its connection to the subduc-
tion criterion.? We give an algorithmic method to determine
the irreducible representations associated with a phase tran-
sition between a higher-phase symmetry group and a lower-
phase symmetry subgroup of index n. We then determine
and tabulate the irreducible representations that engender
all irreducible representations associated with phase transi-
tions where the subgroup index » = 2, 3, 4, 5, and 6. For each
irreducible representation we also determine the epikernels,
i.e., the isotropy groups, the subgroups that satisfy the sub-
duction and chain-subduction criteria.

In Sec. III, we apply the results of Sec. II, to determine
the irreducible representation associated with each of the
two phase transitions O} to C}, and D¢, to D 1$. We also
determine the epikernels associated with each of these phase
transitions. In Sec. IV we show that these two phase transi-
tions belong to the same exomorphic type. We then derive
additional phase transitions, which also belong to this exo-

morphic type.

Il. IRREDUCIBLE REPRESENTATIONS ASSOCIATED
WITH A PHASE TRANSITION

We consider a phase transition between a higher-phase
symmetry group G and a lower-phase symmetry F, where F
is a subgroup of G of index n. Let D “(G) denote the irreduci-
ble representation of G associated with this phase transition.
Given the groups G and F we consider the inverse Landau
problem, to determine the possible irreducible representa-
tions associated with the phase transition.

We apply the subduction criterion

(D*(G){F |D'(F))7#O0. N
That is, the subduced representation D *(G) | F, the irreduci-
ble representation D “(G) restricted to the elements of the
subgroup F, must contain the identity representation D ! (F)

of F a nonzero number of times. Using the Frobenius Reci-
procity Theorem,? Eq. (1) can be replaced by

(D YF) G |D*(G))5#O0. (2a)
The irreducible representation D *(G) must be contained a
nonzero number of times in the induced representation
D'(F)1G.

We shall use the symbol D% (4) to denote the induced

representation D ' (B) t4. Equation (2a) can then be rewrit-
ten as

(DG (&)|D*(G))#O0. (2b)
We shall also use the symbol D; = D¢, 111G to denote the
representation D; of G “‘engendered by the representation
D,y of its factor group G /H. Engendering?® is defined as
follows: Let H be a normal subgroup of G. The cosets g, H of
the coset decomposition of G with respect to H are elements
of the factor group G /H. If D ., is a representation of G /H
then toevery cosetg, H of the factor group G /H corresponds
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a matrix D,y (g,H). To define the engendered representa-
tion D = Dg 411G, we set all matrices D (g, k), for all
of H, equal to the matrix Dg (g, H).

It has been shown 27-?® that

D& =D (G/H)1G. (3)

The induced representation D £ (G) is engendered by the
induced representation D £/ (G /H) of the factor group G /
H, where

H=Core F= n gFg~". 4

g8€eG
From Eqgs. (2b) and (3), it follows that an irreducible
representation D “(G) associated with a phase transition
between the group G and subgroup F of G is such that

D*(G)=D*(G/H)1tG (5)
and
(D &7% (G /H)|D*(G /H))#O0. (6)

That is, the irreducible representation D *(G) is engendered
by an irreducible representation D (G /H) of the factor
group G/H, and D “(G/H) must be contained in the in-
duced representation D &% (G /H) a nonzero number of
times. In addition, since the kernel of D *(G) is equal to the

subgroup H (see Refs. 19 and 27), i.e.,
ker D*(G) = H = Core F, @)

the irreducible representation D *(G /H), which engenders
D %(G), is a faithful representation of G /H.

A matrix D 4 (a) of an induced representation D 2 (4) is
also the matrix representing the permutation of the cosets of
B in 4 under multiplication of the cosets by the element a of
A (see Refs. 28 and 29). The group of matrices is called a
“permutation representation” and represents a group of per-
mutations that is transitive on the cosets of B in A. The di-
mension of this permutation representation is equal to the
number of cosets of B in 4. Consequently, the representation
D&% (G /H) is a permutation representation of a transitive
subgroup T, isomorphic to G /H, of the symmetric group
S,, where n is the index of Fin G.

A method to determine all possible irreducible represen-
tations D *(G) associated with a phase transition between a
group G and subgroup F of index n in G is based on Eqgs. (5)-
(7). Such irreducible representations satisfy the subduction
criterion and, of course, are further restricted by the use of
the chain subduction criterion, Landau criterion, and Lif-
shitz criterion. We have that an irreducible representation
D %(G) isengendered by a faithful irreducible representation
D (G /H), which is contained in the permutation represen-
tation of a transitive subgroup 7, , isomorphic to G /H, of the
symmetric group S,,. A method to determine the irreducible
representations D *(G) is as follows.

(1) Given the group G and subgroup F of index n, deter-
mine the subgroup H, Eq. (4), and the factor group G /H.

(2) Determine the transitive subgroup 7,,, isomorphic
to G /H, of the symmetric group S,,, and the faithful irreduci-
ble representations in the permutation representation of T,,.

(3) Each faithful irreducible representation of the per-
mutation representation determines an irreducible represen-
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TABLE L. Character table of the faithful irreducible representation contained in the permutation representation of the transitive subgroup 6/6 of S;. Above
each character is the number and cyclic notation of the elements in each class. The diagram shows the epikernels of the irreducible representation. The

generators of each epikernel are listed below the diagram.

6/6(48)C2x0%(0®)
1 3 8 6 6 3 8 6 6
(1% (13,29 (3 2% (1%4) 2% (142) (6) (132%) (2,4)
3 -1 0 -1 1 -3 1 ] 1 -1 (LA)

2 2
01(3)

03: (3456), (154236)
iDY: (3456), (36)(45); (1426), (16)(24); (1523), (15)(23).
4p§": (134)(256), (13)(25); (136)(254), (16)(24); (145)(263), (15)(23); (156)(234), (16)(24).
6D 3 (12), (36) (45); (12), (34)(56); (46), (15)(23); (46), (13)(25); (35), (16)(24); (35), (14)(26).
6C5Y: (16)(24); (15)(23); (36)(45); (34)(56); (13)(25); (14)(26).
3C: (12); (46); (35).

tation D (G /H), which in turn engenders, Eq. (5), a possi-
ble irreducible representation D “(G) associated with the
phase transition between G and subgroup F.

To implement this procedure requires the knowledge of
all transitive subgroups T, of the symmetric groups S, and
all faithful irreducible representations contained in the per-
mutation representation of each transitive subgroup. We
have tabulated all transitive subgroups of the symmetric
groups S, for n =2, 3, 4, 5, 6 and the faithful irreducible
representations contained in the permutation representation
of each transitive subgroup.®® In Table I, we give an example
from this tabulation. The table contains the following infor-
mation.

(1) A symbol n/m( p), where n is the degree of the
symmetric group .S,, m is a serial number given to a transi-
tive subgroup 7,,, and p is the order of the transitive sub-
group T,. This is followed by a symbol or symbols, which
denote the group T,.

(2) The character table of the faithful irreducible repre-
sentations contained in the permutation representation of
T, is given. The classes of elements are given in cycle length
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notation with the number of elements in each class given
above the class symbol. The symbol ““(LA)” is written to the
right of the character table if the irreducible representation
satisfies the Landau criterion.

(3) Using the lattices of the symmetric groups,’' we
have derived and tabulated the epikernels®* for each faithful
irreducible representation of the transitive subgroup T, . The
subgroup index of the epikernel is given along the line con-
nected each pair of groups and the subduction frequency is
given in parenthesis following the subgroup symbol. If there
is more than one subgroup of a specific class, the number of
such subgroups is given preceding the subgroup symbol.

(4) The generators of at least one epikernel of each class
of epikernels is given. When the number of epikernels is not
large, as in Table I, the generators of all epikernels in each
class are given.

1il. EXAMPLES

We shall consider two phase transitions: (1) the equi-
translational transition from O} to C}, in BaTiO, and (2)
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the nonequitranslational transition from D¢, to D}} in -
K,SO,. We shall determine the irreducible representations
associated with these phase transitions and show that the
respective irreducible representations are both engendered
by the same faithful irreducible representation.

We first consider the phase transition from G =0, to
F=C),, the equitranslational subgroup of O} with the
Pomt group C4u = {E’ C4z’ CZz’ C4: l’ my, my, mxy! mxy};
C, isasubgroupofindexn = 6inO ). Thecoreof F=C},,
see Eq. (4),is

H=CoreC,, =C},

where C} is the translational subgroup of O } . It follows that
G/H = 0} /C! and is isomorphic to the point group O, of
order 48. Then D £/% is a permutation representation of a
transitive subgroup of order 48 of S,. There is only one such
transitive subgroup of S, the group denoted by 6/6(48) giv-
en in Table I. This permutation representation contains a
single, Landau active, faithful irreducible representation
whose character table is given in Table I. This character

TABLE I1. Character table of the faithful irreducible representation contained in the permutation representation of the transitive subgroup 6/6 of S°. In the
first and second column are the number and cyclic notation of the elements of each class whose character is given in the third column. In the fourth column,
we list in cyclic notation all elements of the transitive subgroup belonging to each class. Below each element we list the cosets of the factor groups O 4/C! and

D%, /C? isomorphic to this transitive subgroup of S,

1 (1% 3 (M (2)(3) () (5)(6)
(E |000)
{(£]000),(C, |004)}
3 (14,2%) -1 (35)(46) (12)(46) (12)(35)
(C,.|000) (C,, (000) (C,|000)
{(E1010),(C,. J011)} {(E(110),(C, |11})} {(E|100),(C,, |10}
8 (3% ) (145)(263) (136)(254) (134)(256) (156)(234)
(CSxyzlm) (Cknl(m) (CSx’zlw)) (Clxﬂlm)
{(G,|010),(C ¢ Yj01p)} {(c; "1010),(Cql01}) } {(C;*|000),(C,)001)} {(C;11110),(Cq|111)}
(154)(236) (163)(245) (143)(265) (165)(243)
(C 5,21000) (C 32,:1000) (C 55%1000) (C 52,2/000)
{(C;"1100),(C¢|10) } {(Gy110),(C 5 11D} {(C,]000),(C;'f004)} {(C,]100),(C 5| 104)}
6 2% -1 (15)(23)(46) (14)(26) (35) (12)(36) (45)
(C1yy )|000) (C21,.|000) (C,y, [000)
{(C ,,1000),(C;,|003)} {(C1y |110),(Cy5111)} {(C,,1000),(C;|004)}
(13)(25) (46) (16)(24)(35) (12)(34)(56)
(C1s,,|000) {C1x:1000) (Cy3,|000)
{(€,,1100),(C;,|104)} {(C.,,1000)(C,|001) } {(C,,|010),(C;;l013)}
6 (12,4) 1 (3456) (1426) (1325)
(Cax |000) (C4y |000) (C4.[000)
{(C,,|100),(C;,(104)} {(C1,,1100),(Cy| 109} {(C [110),(Cx[ 111}
(3654) (1624) (1523)
(C . '{000) (C; '1000) (C;;'|000)
{(€,,1110),(C,, | 111)} {(C,,,1010),(Cy,|011)} {(€ 4 [010),(C,,J011)}
1 2% -3 (12)_(_35) (46)
_ (1]o00)
{(1]000),(m, |00} }
3 (14,2) 1 (12) (35) (46)
(m,|000) _ (m,]000) _ (m,]000)
{(1]010),(m, |011)} {(1}110),(m,|111)} {(1]100),(m,|10§)}
8 (6) 0 (134256) (143265) (163245) (145263)
(S 6y 000) (Sezy |000) (Ssx5:000) (Sey2/000)
{(S51101),(S5,100)} {(8,)11),(5 ¢ '|110)} {(5,)003),(S ¢ *|000)} {(5,]104),(S s '1100)}
(165243) (156234) (154236) (136254)
(S & 1000) (S &, [000) (S &5.1000) (S &,41000)
{(5,]01}),(S ¢ '|010)} {(S51014),(Se[010)} {(55|004),(5,/000) } {(S 5 '113),(S110)}
6 (1323 1 (13)(25) (16) (24) (34)(56)
(m, |000) (m,, |000) (m,, ]000)
{(m,|004),(m, |000)} {(m,|114),(m,, |110)} {(m,|004),(m, |000)}
(15)(23) (14)(26) (36)(45)
(m5, [000) (ms, |000) (my, [000)
{(m,)10}),(m, |100)} {(m;|004),(m,, |000)} {(m,|01}),(m,|010)}
6 (2,4) -1 (12)(3456) (1426) (35) (1325) (46)
(54, /000) (S4,|000) (S 4, 1000)
{(m,|11}),(m, |110)} {(m;]01}),(m,, |010)} {(m,]014),(m, 010)}
(12)(3654) (1624)(35) (1523)(46)
(5 &= '|000) (S 5 '|000) (S '1000)

{(m,[101),(m, {100)}

{(m,|104),(rm,, |100)}

{(m,]113),(m, ]110)}
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3C4v(1)
(1)
6C2v(1)\
365 (2) 6C2(2)
\1 /
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FIG. 1. Epikernels of the irreducible representation D *= @®004— (01},

table is given in detail in Table II. In the first three columns
we duplicate the first three rows of the character table given
in 6/6(48) of Table I. To the right of each character we list
explicitly in cyclic notation the elements of each class of this
transitive subgroup of S,

The factor group G/H = O, /C| is isomorphic to this
transitive subgroup of S denoted by 6/6(48). The isomor-
phism is between elements P, of 6/6(48) and cosets
(R;|000)C!} of G /H. In Table II we have denoted the coset
(R,;|000)C} isomorphic to P; by listing below the element
P, the coset representative (R, |000). This isomorphism and
the faithful irreducible representation of the transitive sub-
group 6/6(48) of S; determines the irreducible representa-
tion D*(0 }/C ), see Eq. (6), which in turn engenders, Eq.
(5),the irreducible representation D *(0 ) ) associated with
the phase transition between O} and C),. This irreducible
representation D *(0}) is denoted by D ¥ =%%04- (0! yin
the notation of Cracknell et al.**

Using the epikernels and generators of the epikernels
given in Table I along with the isomorphism between the
elements of 6/6(48) and cosets of O ) /C | given in Table II,
we can derive the subgroups of O }, which satisfy the chain-
subduction criterion for phase transitions from O} associat-
ed with the irreducible representation D ¢ =%004- (1},
These epikernels are given in Fig. 1.

The second example is the phase transition from hexag-
onal G’ = D¢, to orthorhombic F' = D }$. The subgroup
D }; has the translation subgroup generated by the hexagon-
altranslations (E |1,0,0), (£ |1,2,0),and (£ |0,0,1). Theele-
ments of D§,, which are the coset representations of D 1¢
with respect to its translational subgroup, are

(E0,0,0), (1]1,1,0),

(C10,01), (m5|1,1,1),
(Cx|1,1,0), (m,]0,0,0),
(Cn|L14), (m,]|0,00).

Now D }$ is a subgroup of index #n = 6 of D¢,. The core of
F'= D{‘,f, see Eq. (4), is
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H'=CoreD;; =C3.

The group C3 has the translational subgroup generated by
the hexagonal translations (E |2,0,0), (E|0,2,0), and
(E|0,0,1). The elements of D ¢,, which are the coset repre-
sentatives of C? with respect to its translational subgroup,
are (E |0,0,0) and (C,|0,0,4). The factor group G'/
H' = D¢$,/C3 is isomorphic to the point group O, of order
48. It follows that D7’ is then a permutation representa-
tion of a transitive subgroup of order 48 of S,. This is the
same transitive group, 6/6(48) given in Table I, as that
which arose in the first example given above.

The isomorphism between the elements P; of 6/6(48)
and the cosets (R;|7;,)C2% of G'/H ' is given in Table II. Two
lines below each element P, of 6/6(48) given in Table II we
have denoted the isomorphic coset (R;|7;)C2 of G'/
H'=Dg,/C2. Since

(R;|7,)C3 = (R,|7)C{ + (Ry|7:)(C;[0,0,))C1,

where C 1 is the translational subgroup of C 3, we list the two
elements (R |r;) and (R,|7,)(C,,|0,0,}). This isomorphism
and the faithful irreducible representation of the transitive
subgroup 6/6(48) of S; determines the irreducible represen-
tation D*(D ¢, /C?), Eq. (6), which in turn engenders, Eq.
(5), the irreducible representatlon D*(D¢ s ) associated
with the phase transition between D ¢, and D 1$. This irredu-
cible representation D<(D§,) is denoted by
D*=4092—(p% ) in the notation of Cracknell et al.3?

Using the epikernels and generators of the epikernels
given in Table I along with the isomorphism between ele-
ments of 6/6(48) and cosets of D ¢,/C?2 given in Table II,
we can derive the subgroups that satisfy the chain-subduc-
tion criterion for phase transitions from D ¢, associated with
the irreducible representation D*= %92~ (D%, ). These
epikernels are given in Fig. 2.

The above two examples are at first glance quite differ-
ent, one being an equitranslational phase transition while the
second is nonequitransiational. However, as we have seen,
these two transitions are mathematically similar; the asso-
ciated irreducible representations are engendered by the

3D2h(1)

C v

6D2h(1)

\

5
362h(2)

S

2
c3(3)

ZV(Z)

/

FIG. 2. Epikernels of the irreducible representation D *= 4092~ (D%, ).
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TABLE III. Phase transitions O, to C/, and O}, to D%, that belong to the
exomorphic type of phase transition characterized by the permutation rep-
resentation of the transitive subgroup 6/6 of S,. Here, H = Core F= C|
for all cases.

G=0; F=CJ, F=D%,
i j k
1 1 5
2 6 8
3 7 5
4 4 8
5 9 11
6 10 1
7 1 12
8 12 12
9 9 9

10 12 10

same faithful irreducible representation. This mathematical
similarity of different phase transitions has been codified by
the concept of exomorphic types of phase transitions.?!->*

IV. EXOMORPHIC TYPES OF PHASE TRANSITIONS

Two phase transitions, between a higher-phase symme-
try group G and lower-phase symmetry F and between a
higher-phase symmetry G' and lower-phase symmetry F’,
are said to be of the same exomorphic types if and only if 2!
(1) the factor groups G /H, where H = Core F,and G'/H ',
where H' = Core F', areisomorphic; and (2) there exists an
isomorphism that maps the factor group F/H into F'/H '

Alternatively,** we can state that two phase transitions
aré of the same exomorphic type if and only if a suitable
labeling of the cosets g,F and g{F"' in the coset decomposi-
tions G with respect to F, and G ' with respect to F’ exists such
that the permutation representations D%5/% (G/H) and

DE/H (G'/H') are identical groups of permutations.

In the examples of Sec. I11, both the transitions G = O }
toF=C) and G' =D}, toF’ = D¢ are of the same exo-
morphic type. The factor groups G/H=04/C!} and G'/
H'=D}$,/C3% are isomorphic with the isomorphism given
in Table II, where we find that F/H = C!,/C} is isomor-
phicto F'/H' = D }$/C?2. The permutation representations
D&% (G/H) and DE/Z (G'/H') are identical groups of
permutations isomorphic to the transitive subgroup 6/
6(48) of S;.

It follows from the above and Egs. (1)-(6) that if the
phase transitions from G to F and G’ to F' are of the same
exomorphic type, then the irreducible representations
D*(G) and D*(G'), which can be associated with the re-
spective phase transitions, are each engendered by faithful
irreducible representations contained in a single permuta-
tion representation. This is the permutation representation
denoted by DE/Z (G/H) and DE/2' (G'/H’), and is a

G'/H'
permutation representation of a transitive subgroup, iso-
morphic to G /H and G'/H', of the symmetric group S,,.
If the permutation representation contains a single
faithful irreducible representation then this faithful irreduci-
ble representation engenders the irreducible representations

associated with all phase transitions belonging to the exo-

TABLE IV. Phase transitions D%, to D J, that belong to the exomorphic type of phase transition characterized by the permutation representation of the
transitive subgroup 6/6 of Ss. Here Ch. 1 and Ch. 2 refer to the alternative choice of origins as given in the International Tables for Crystallography.** The shift
in origin, with respect to the translational subgroup of D, is also given. Here, H = Core F is given to the right on the same row as F.

G H
Dl D;:(Pﬁﬁl) Ch.1 D;,,(Pi-z-l) (140)Ch.1 o
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Dz"(ch am 340 b mm :
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Dgh(pﬁi}_) gh(p}_ﬁi) c!
ncn C; g
7 21_1_2_) 0 7(1:..2___1__) 0 C!
py(Pall ) (P22l 130 '
2,22 222
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D;;(pﬁiﬁ) D;g(p_z_ll.?_l) c!
2 53 22,2
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N mam 340 *\"b ¢ m
D4, D;:(Pﬁﬁﬁ) (1.40) D‘;,.(Piiﬁ) 140 c3
cmn nan
py(rh L2 py(rihl) .
nmn can
L3 (Pﬁ—z—ﬁ) Dy (;&21.2.:) (04,0) Ch. 2 c!
c am nmm
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morphic type. In the examples of the previous sections the
irreducible representations D*=©@%?4—(0}) and
D*=4002- D%y are associated with the phase transi-
tionsfromG=0)to F=C}, andG'=D¢, toF' =D},
respectively. These two phase transitions belong to the same
exomorphic type, and both irreducible representations are
engendered by the same faithful irreducible representation,
denoted by D*(0 L/C1) and D*(D¢,/C3%), the only faith-
ful irreducible representation contained in the permutation
representation of the transitive subgroup 6/6(48) of S,.
The two phase transitions G=0, to F=C,, and
G' =D}, to F' = D} belong to the same exomorphic type
whose permutation representation is the permutation repre-
sentation of the transitive subgroup 6/6(48) of Ss. Addi-
tional equitranslational phase transitions belonging to this
exomorphic type withG = 04 and F=CJ, and F=D¥%, as
given in Table III. In Table IV we give the phase transitions
between G = D%, and F = D 4, that belong to this exomor-

phic type.
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