dent variable; y = M, /2.5M;, describes the scaling with
total mass M ; the subscript O refers to the 2.5M, model; v
is the power of T'in the energy generation law (v = 4.5 for
p.p., v = 18 for CN used here). These relations use mass
rather than radius as the independent variable. However
the Tables I and II can be interpreted as giving all other
variables as functions of m = M /2.5M,. For different val-
ues of v, the mass scaling changes according to Eq. (17)
and the functions ry(m), Py(m), etc. need to be recalculat-
ed (note the difference between v = 4.5 and v = 18 models
given here).

The homology relations exist because the opacity and
energy generation laws are power law formulas. These
power laws are only approximations. For lower mass main
sequence stars, where the p.p. cycle provides most of the
stellar luminosity, the p.p. cycle model given here, scaled to
the mass of interest, gives a reasonable approximation. For
higher mass main sequence stars’ mass, where the CN cycle
provides most of the luminosity, the scaled CN model gives
a reasonable approximation.

In summary, following the prescription described in
Secs. II and III above, it is possible to obtain relatively
quickly self-consistent stellar models for stars with convec-
tive cores and radiative envelopes. The great simplification
over the currently discussed methods in textbooks is that
numerous trial core integratioris need not be done. One
only needs to solve Eq. (12) for &, to get a core model that
exactly matches 7, P, and T at the envelope boundary.

Equation (11c) gives the core mass and a single core inte-
gration then gives the core luminosity. The starting values
of total mass and luminosity and surface radius for the
envelope in general need to be adjusted a number of times
to converge to a final model.

The above procedure makes it now practical to have up-
per year undergraduate astrophysics students construct
self-consistent stellar models. This is much more satisfying
to the student then constructing inconsistent models. It
also demonstrates the Vogt~Russell theorem well. The val-
ues of total mass and luminosity and surface radius have to
be chosen in a particular manner, consistent with the fact
that a chemically homogeneous star’s structure should de-
pend only on its total mass and chemical composition.
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A microcomputer-generated one-dimensional quasi-crystal grating is produced on a high-
resolution monitor. Photographic reproduction of the grating with about a 30 X reduction in size
produces an acceptable optical grating. The location of diffraction maxima and the relative
intensity pattern produced by passing HeNe laser light through the grating is compared to the
theoretical prediction with mixed results. The comparison of two types of film that can be used for

this experiment is also discussed.

I. INTRODUCTION

In classical crystallography the atomic structure of a
crystal is assumed to be periodic. A crystal thus consists of
a single unit cell of atoms that is repeated throughout the
crystal. As consequences of this translational symmetry,
the possible rotational symmetries are limited to the 32
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“crystallographic” point groups and the diffraction pat-
tern of a crystal consists of sharp Bragg peaks. A remark-
able discovery in 1984 by Shechtman et al.' showed a dif-
fraction pattern of an alloy of aluminum and manganese
with sharp diffraction peaks and a noncrystallographic
point group symmetry. The sharp diffraction peaks im-
plied long-range ordering. The noncrystallographic sym-
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metry implied that the atomic structure was not periodic.
This new type of structure, one that is not periodic yet gives
rise to a diffraction pattern with sharp Bragg peaks is called
a “quasi-crystal.”

Microcomputers have been used for calculating theoreti-
cal diffraction patterns of the more complex Fresnel
type,> and have been used to determine experimental in-
tensities for diffraction and interference patterns.* In this
article we describe a method of generating a one-dimen-
sional quasi-crystal grating, obtaining a transparency im-
age and investigating the diffraction pattern from that
transparency. Briefly, the procedure is a one-dimensional
quasi-crystal grating is generated on a computer screen and
photographed to produce a transparency. A Frauenhofer
diffraction pattern is produced by the transparency with a
HeNe laser. The experimental intensity pattern is mea-
sured and compared to the predicted theoretical intensity
pattern. Two types of film that could be used to produce the
transparency are discussed.

The methods described may be applied to most college
optics labs from the sophomore to senior level depending
upon the degree of participation of the student in the var-
ious levels of preparation and investigation. It should also
be noted that although we describe a quasi-crystal due to its
current high degree of research interest, the methods dis-
cussed are very versatile, and may be used to produce a
large variety of custom-designed optical “gratings” to be
investigated. :

II. THEORY

To generate quasi-crystal patterns (nonperiodic pat-
terns that give rise to diffraction patterns with sharp Bragg
peaks), so-called projection methods have been devel-
oped.>” Projection methods are mathematical constructs
that project sections of a hypercubic lattice onto lower di-
mensional spaces. The first such projection.was given by de
Bruijn, where he showed that the vertices of the two-di-
mensional Penrose pattern of darts and kites can be genera-
ted by the projection of a section of a five-dimensional hy-
percubic lattice into two dimensions.® One-dimensional
quasi-crystal patterns are found by a projection from a two-
dimensional square lattice into a one-dimensional space:
On a two-dimensional square lattice with sides of unit
length, one draws a line at an angle 6, with respect to one of
the lattice directions, and displaced a distance d from an
arbitrarily chosen origin. One then projects a corner, e.g.,
the lower left corner, of each square cut by the line, orthog-
onally onto the line. Equivalently, one can project all
corners of the square lattice within a specified strip parallel
to the line drawn.® The one-dimensional array of points on
the line defines a one-dimensional quasi-crystal pattern.
These one-dimensional quasi-crystal patterns consist of a
row of points, each pair of consecutive points separated by
one of two distinct segment lengths. These two segment
lengths are referred to as long and short segments, and
denoted by L and S, respectively. A characteristic of the
quasi-crystal pattern is that the pattern of points or seg-
ment lengths is neither periodic nor random.

For these one-dimensional quasi-crystal patterns, an al-
gebraic expression for the coordinates of the points has
been derived.” This expression was derived using formulas
for special sequences of the numbers one and zero given by
de Bruijn.'® Let | x ], called the floor of x, denote the largest
integer less than or equal to x. Let [x1, called the roof of x,
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denote the smallest integer greater than or equal to x: The
algebraic expression for the coordinates is given in terms of
such floor and roof functions. Let x(m) denote the coordi-
nate of the mth point in a one-dimensional quasi-crystal
constructed by the projection method with a line drawn on
the two-dimensional square lattice at an angle & and dis-
placement d:

x(m)=mcos 8 + (|y +m/a] — |y])(sin 6 — cos 8),
(N

where
a=1+1/tan 6,
y=(—d/sinf + [ —d/sinfl +1)/( —a).

The two segment lengths are, taking 45°<6<90°, L =sin 8
and § = cos 8.

Equation (1) can be generalized to include one-dimen-
sional quasi-crystal patterns with two arbitrary distinct
segments of length L and S: '

x(m) =mS+ (ly +m/a] — ly)(L—S). (2)

This type of one-dimensional quasi-crystal pattern corre-
sponds to those obtained via a second method known as the
grid method in the case where one allows for arbitrary seg-
ment lengths.!' Equation (2) has been utilized to construct
diffraction gratings where the spacing between slits corre-
sponds to a one-dimensional quasi-crystal pattern. In Fig. 1
we show such a grating whose spacings correspond to a
Fibonacci quasi-crystal pattern: d =0, & =arctan[(1
++/5)/2], and (1 ++/5)/2 is the golden ratio.

The light intensity distribution for Frauenhofer diffrac-
tion from a quasi-crystal diffraction grating is calculated as
follows: Let the incoming plane wave of wavelength A (and
wavenumber k = 277/4) be along the y axis normal to the
diffraction grating in the x—z plane. The slits of width
“a”are parallel to the z axis and the center of the slits is
positioned at the x coordinates x(m), m = 1,2,3,...,n. The
normalized intensity 7(8) of the beam diffracted at an an-
gle @ in the x—y plane is given by

1(6) = (1/n*)[F,(6)* 4 F,(6)*]D(0), (3)

ANGLE= 53,2825 DISPLACEMENT= 0 |= 3 $= 4

Fig. 1. A reproduction of the computer screen grating for a one-dimen-
sional Fibonacci quasi-crystal. The screen is not color reversed.
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where

F.(0)= 3 coslkx(m)sin],

m=1

F.(0)= 5: sin[ kx(m)sin @ ],

m=1
and the diffraction factor is
D(8) = sin*[(ma/A)sin 8]/ (ma/A)sin 6]

The intensity I(x,) as a function of the position x, at a
screen a distance d; from the grating is found from the
above equation by substituting sin 8 = x_/d,.

III. EXPERIMENT

A computer program written in BASIC employing Eq.
(2) was used to generate a vertical bar grid (grating)
across 8 in. of the monitor of an Atari 520 ST computer.'?
This black and white grid was color reversed (Fig. 1 is the
original “positive” computer screen) and reduced approxi-
mately 30X by photographing the screen from a distance
of 1.5 m with a 35-mm camera equipped with a standard 50
mm, f 1.8 lens. The photographs were made using Polaroid
HC Instant Copy Film. The resulting positive copy pro-
vided a “grating” approximately 7 mm across representing
a one-dimensional Fibonacci quasi-crystal pattern.'* The
spacing and slit widths were originally determined by the
computer program (limited by the resolution of the moni-
tor screen), and the distance for photographing was deter-
mined such as to provide a reasonable diffraction pattern
when illuminated with a HeNe laser of 5-mW intensity and
632.8-nm wavelength. The Polaroid film was chosen for its
speed and convenience of development (2 min in a Polar-
oid Autoprocessor).

The developed exposures were cut apart, mounted in
2X 2 slide mounts, and placed in an x—y translation stage
located in front of the unmodified laser beam. The resulting
diffraction pattern was projected onto a screen 4.6 m from
the grating. The observed diffraction pattern was fit best
with a computer model of 10 or 11 illuminated slits, and
consistent with a determination of the 1/¢*> beam radius
(r,) of 0.40 + 0.04 mm from a knife-edge test. The center
of the beam within + r, would illuminate about six slits of
the grating. This illumination produced a finite number of
maxima (about 13) and some visible secondary maxima.

The resulting experimental diffraction pattern is super-
imposed on the theoretical pattern in Fig. 2. The theoreti-
cal pattern is calculated from Eq. (3) and the experimental
data were obtained using a photoresistor in a simple circuit
(battery and series resistor). A digital voltmeter measured
the potential across the series resistor. The potential was
proportional to the intensity of the light falling on the pho-
toresistor. The potential was corrected for the photoresis-
tor response by calibrating it with a well-known double slit
interference/diffraction intensity pattern using a technique
similar to that in Ref. 4. The resulting intensity measure-
ments are accurate to + 5%. The photoresistor was
mounted on an optical bench in such a way that its horizon-
tal position could be determined on the centimeter scale
running the length of the bench.

An analysis of the data represented in Fig. 2 indicates the
location of the diffraction maxima is a very good fit to the-
ory for those maxima that are 4.86 cm or less from the
central maxima (0.6 mm deviation for all but one maxi-
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Fig. 2. A comparison of the normalized intensity pattern predicted by
theory (solid line) and experimentally determined (dots). Only one half
the diffraction pattern is shown because it is symmetric about the origin.

mum and 1.6 mm for that one), the maxima at 6.2 cm does
not appear on the theoretical plot. It was discovered that
the diffraction portion of Eq. (3), D(8), has a minimum at
5.8 cm for the parameters that seem to provide the best fit
to the rest of the pattern, and almost completely cancels the
expected maximum. The intensity pattern for interference
only [D(8) = 1in Eq. (3)] does show the observed maxi-
mum at 6.2 cm. Examination of the computer screen image
(Fig. 1) shows the slits (black lines) are not of constant
width, but vary from one slit to another in spite of the
programming calling for a slit of one pixel width in all
cases. There appear to be two slit widths present. This phe-
nomenon may explain the observed appearance of the
maxima at 6.2 cm. We have investigated regular patterns
such as a double slit with two widths and found similar
anomalies of position and intensity.

The intensity comparison is not as good. The measured
intensities vary from 0.5 to 3 times the theoretical value.
The theoretical intensity pattern was generated assuming a
constant slit width. The observed variation from theory is
of the kind associated with variable slit widths, such as we
have seen in the double slit intensity pattern referred to
above. The finite 8-mm aperture of the detector causes
some loss of resolution of the detailed intensity pattern.

Although the Polaroid film is very convenient to use due
to its speed and ease of processing, it has a serious draw-
back in the appearance of “grain” that does not yield a
sharp edge at the slit boundary. At the end of this experi-
ment, a comparison with Kodak Technical Pan Film that
produces a fine grain negative when processed the more
traditional way (D-19 for 6 min followed with 5 min in
rapid fixer) was made. Figure 3 compares the results. Fig-
ure 3(a) and (b) provide a comparison of the negative
images of a direct print from the slides with Fig. 3(a) being
a portion of the Polaroid grating and Fig. 3(b) being the
grating on Technical Pan film. The prints (about a 30X
enlargement of the slides) show the difference in grain
structure and the relative roughness of the slits on the Po-
laroid film due to the large grain present. Enlarged prints
(about 3X) of 100X photomicrographs [Fig. 3(c) and
(d) ] emphasize the grain structure that appears in the low-
er magnification negative prints of Fig. 3(a) and (b). The
comparable diffraction patterns are shown in Fig. 3(e) and

(), respectively. A significant amount of spurious diffrac-
tion is present in the pattern generated by the grating made
from the Polaroid film. Surprisingly, however, the Kodak
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{a) ~ (b)

(c) d)

(e) f

Fig. 3. A comparison of the gratings and resulting diffraction pattern for
Polaroid HC Instant Copy Film (left column) and Kodak Technical Pan
Film (right column). Here, (a) and (b) are 30X negative enlargements
of the slides used to produce the diffraction patterns shown in (e) and (f),
respectively; (c) and (d) are reproduced from 100X photomicrographs
showing the relative grain size of the two films used. The horizontal dark
streak in 3(d) is due to uneven lighting during reproduction, and not
present on the original slide. .

film provides less transmission of the laser light used to
generate the pattern, and the intensities of the secondary
maxima at 2.65 and 4.0 are unchanged in relative value
even though the intensities relative to the central maxima
are reduced.

IV. CONCLUSIONS

(1) A computer with a high-resolution monitor has been
successfully used to generate one-dimensional quasi-crys-
tal gratings that when photographed with an appropriate
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reduction will produce an acceptable diffraction pattern.

(2) The algebraic theory for location and intensity of
diffraction maxima has been compared to an experimental-
ly produced pattern. Agreement is generally good for loca-
tion of diffraction maxima, but poor in most cases for actu-
al relative intensity measurements.

(3) At the current time, better results for photographic
production of gratings remains with conventional high-
contrast negative emulsions. However, while either film
will produce a satisfactory result for locating diffraction
maxima, the polaroid film has a distinct advantage in pro-
cessing speed.

(4) A rapid and easily reproducible method for produc-
ing custom gratings for a variety of instructional uses has
been described. This work could easily be extended to two-
dimensional patterns within the limitations of the pixel ar-
ray of the computer monitor.
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