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Abstract. The possible non-crystallographic point group of the decagonal quasicrystal
phase of Al-Mn alloys has been shown by Bendersky to be either Dy, or C,,,. For the
physically irreducible representations of these groups, we derive the Clebsch-Gordan
products, extended integrity bases, stability spaces and tensorial covariants. The point
groups which can arise in phase transitions are determined along with corresponding
tensorial parameters which could drive the transition. Itisshown that equilibrium tensorial
properties whose components transform as the components of the electrogyration or
elasto-optic tensors can distinguish between the Dy, and C|,, point group symmetry of
the decagonal phase.

1. Introduction

The decagonal or T-phase quasicrystal is a quasicrystal with one-dimensional transla-
tional symmetry and tenfold rotational symmetry. Bendersky (1985, 1986) has shown
that the non-crystallographic point group symmetry of this quasicrystal is either
D on(10/ mmm) or C,,,(10/ m).

In this paper we examine the group theoretical properties of the physically irredu-
cible representations (PIR) of the point groups Dy, and C,,, and their implications
for phase transitions and tensorial properties of quasicrystals with such point group
symmetries. In § 2 we define the pir of Dy, and C,y,, the Clebsch-Gordan series,
Clebsch-Gordan products and the extended integrity bases for these point groups.
The subgroups of Do, and C,, and the stability spaces of their pir, are derived in
§ 3. We also determine in § 3 the possible subgroup symmetries which can arise during
a phase transition. In §4 we derive tensorial covariants which can be transition
parameters and discuss the tensorial invariants which can distinguish between the D),
and C,o, point group symmetry.

2. Physically irreducible representations

Generators of a set of physically irreducible representations (pPIr) of the point groups
D, and C,, are given in table 1. The non-standard indexing of the pir of the point
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Table 1. Physically irreducible representations (PiR) of the point groups C,, and D,,,

s=sin 27/20 and ¢ =cos 27/20.

Point group D,,(10.2,2,) Point group C,4(10.)
PIR 10 2, PIR 10.
D, 1 1 D, 1
D, 1 -1 D, -1
D, -1 1
D, -1 -1
s -c 1 s —c
oo () (L) o (07
[ -1 4 s,
S IR I
© s —c¢ -1 ¢ s —c
[ i ¢ -5
: o ()
? <s c) ( —-1) 7 K c
-5 - 1 =5 -c
: o (1)
8 < c —s) ( —1) 8 ¢ -5

group C,, has been chosen to explicitly show relationships between the pir of D, and
Cio. The Pir D;, i=1,2, and D;, i=3, 4, of the point group D,, subduced onto the
point group C,, are, respectively, the pir D;, i =1, 2, of the point group C,,. The PR
D,, i=5,6,7,8, of D, subduced onto C,, are, respectively, the pir D;, i=5,6,7, 8, of
the point group C,,. The pIR of D;pn=D,ox1 and C,p,=C,ox1 are denoted, as is

customary, by the symbols D and D;.

The Clebsch-Gordan series for the PIrR of the point groups D,, and C,, are given
in table 2. At the intersection of the ith row and the jth column are the indices k of

Table 2, Clebsch-Gordan series for the PIR of the point groups C,, and Dy,.

Dy
1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 4 3 5 6 7 8
3 1 2 8 7 6 5
4 1 8 7 6 5
5 1+2+6 5+6 7+8 3+4+7
6 1+2+5 3+4+8 7+8
7 1+2+5 5+6
8 1+2+6
Cio
1 2 5 6 7 8
1 1 2 5 6 7 8
2 1 8 7 6 5
5 1+1+6 5+6 7+8 2+2+7
6 1+1+5 242+8 7+8
7 1+1+5 5+6
8 1+1+6
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the PIR which appear in the reduced form of the direct product D, x D;:
D:xD, =Y ®D. (1)

If a specific Pir appears more than once on the right-hand side of equation (1), the
corresponding index k is repeated in table 2. This table also gives the Clebsch-Gordan
series for the point groups Dor and C,,. We have

D xD;=D;xD; =Y ®D; (2a)
D/ xD; =D;xD; =Y ®D; (2b)

and indices k are again found at the intersection of the ith row and jth column of
table 2.

Table 3. Clebsch-Gordan products for the PIR of the point group D,,.

PIR Basis functions

D, X3, X3 X3, X3+ YE X3+ X3, X3+ Y3, X+ V3

D, X3 Xa, Xs Yo YoXs, X Yo~ YV Xq, Xo Vo= YoXo, X, Yy~ VX,

D, X Xa, XsXg— Y Yy, X X:- Y, Y5

D, X, Xy, Xs Y+ YiXy, Xe Yot Yo X5

Dy Xo(Ys, = Xo), Xa( Xg, = Ye), Xol Yy, Xo), (X3= Y3, Xo Yo+ Yo X0, i XI- Y, =X, Y, —
YoX,), (XsXo+ YsYe, XoYe— YiXo), (X Xs+ Yo Y, X; Yy~ Y5 X,)

D, XA Yo, = XY, X3 X5, = Yo, Xyl Yo, Xo), (X3— Y3 XYt VX, (X3- Y3, - XY, —
YeXg), (XeXo— YsV, =X Yo~ YiXo), (X-Xg— Y2 Yy, X5 Y+ Y-X)

D, XY, = X-), Xy(Xe, = Yo), Xal Yo, Xg), (X X5+ VY, =X Yo+ YX-),
(XeXy+ Yo Yy, ~ X Yyt Yo X, (XsXg+ Yo Ve, Xs Yy — YiXy)

Dy Xo( Yy, =Xy, Xa(Xs, = Yo), Xy Vs, X5), (XsXa— YiVs, Xo Vst YXo0,

(XGX"-" Y(a Y-, _X6Y7— YGX'T)s {X(»Xg" Yn Yxs _Xh Yy,_ Yexx)

We shall use the following notation for the basis functions of the pir defined in
table 1. For the one-dimensional piIR D, i=1,2, 3, 4, of the point group D,, and D,,
i=1, 2, of the point group C,,, we denote the basis functions by X,, i=1, 2,3,4. For
the two-dimensional pir D;, i=5,6,7, 8, of both point groups D,, and C,, we denote
the basis functions as (X, Y;),i=5,6,7, 8. For the groups D)y, and C,¢,, one includes
a superscript '+’ or ‘=" in the above notation for the basis functions of pIR with the
same superscript notation.

The linear combinations of products of basis functions of pir D, and D, which are
basis functions of the piIR D, appearing on the right-hand side of (1) are known as
Clebsch-Gordan products (Kopsky 1976). The Clebsch-Gordan products for the pir
of the point groups Dy, and C,, are given, respectively, in tables 3 and 4. These same
tables represent the Clebsch-Gordan products for the pIr of the point groups D,y
and C,q,. For pir D} appearing on the right-hand side of (2a), one includes in tables
3 and 4 the superscript ‘+’ or ‘=" on all basis functions. For pir Dy (see (2b)), one
includes in tables 3 and 4 the superscript "+’ on the first basis function and the
superscript ‘=’ on the second basis function, or vice versa, in each term of the
Clebsch-Gordan products.

An extended integrity basis of a polynomial algebra in a set of variables on which
a finite group operates includes the ordinary integrity basis of invariants and the linear
integrity basis of covariants (Kopsky 1975, 1979a, Patera et al 1978). The latter are
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Table 4. Clebsch-Gordan products for the iR of the point group C,.

PIR Basic functions

D, X2 X3+ YL X34+ YL X3+ Y5, Xa+ Yi, X Ya— YViXo, X Y- Y Xo, X5 Y7~ Yo X5,
X Yo~ Y Xy

D, X Xo— YV XeXom Yo Vo, XYt YiX, X Y-t Y X,

D, Xo( Xg, = Yo (X3 Y3 X, Yo+ Yo Xo), (X2E= Y, =X Y= Y Xo), (X X+ VsV, X Y-
YX,), (X X+ Y, Y5, X; Yy — Yo Xy)

D, XXy, =YD (X3= Y5, X Yot YiXo), (X5— Vi, =Xy Y= YViXy), (XX~ Vs Yo, =X Y-
YX,), (X Xs= Yo Yy, Xo Y+ Y-Xy)

D, Xo( Xo, = Yo)o (XsXq4 YoYq, = Xs Yok YoXo), (XoXo+ YV, Xo Yy~ YaXy),
(Xe Xyt Yo Ye, = Xo Yt Yo Xy)

Dy Xo(Xq, = Yo), (XsXo— Yo Vo, Xe Yok YsXo), (X XoF Yo Yo, =X Yo+ YX5),

(XeXs— Yo Vs, =X Yg— Y Xy)

defined as sets of covariants of a given type such that any other covariant of this type
is expressible as a linear combination of the basic ones with invariants as coeflicients
of the combination. With the aid of the Clebsch-Gordan products we have derived
the extended integrity basis for the point groups Do, and C,y,. In table 5 we give the
extended integrity basis for the point group D,q,, i.e. for the polynomial algebras
where the set of variables are the basis functions of the pir of the point group D, gp.
The extended integrity basis for the point group C,q, is given in table 6, where that
part of the table not explicitly given is identical with the corresponding part in table
5. Inbothtables 5 and 6 we have used the shorthand notations P,and Q;,i=1,2,...,10,
for polynomials which are defined in table 7. For typographical simplicity the basis
functions have been entered with neither subscript nor superscript. The subscript and
superscript of all basis functions in a specific row of tables 5§ and 6 are that of the PIrR
indexing that row.

3. Phase transitions

In this section we determine the stability spaces of the pIr of the point groups Dq,
and C,q,, and consequently the possible subgroup symmetries which can arise via a
phase transition. In figure 1 we show the coordinate system used and the axes of the
twofold rotations denoted by 2/ and 2%/’ j=1,2, ..., 5. Intable 8 we list the elements
of the point group Dy, and of the subgroups of D ;.. The elements of the point group
Con and of the subgroups of C,,, are also found in this table. A superscript ‘)’ in the
symbol of a subgroup in table 8, e.g. DY/, signifies that this symbol denotes five
subgroups D%, j=1,2,...,5. Figures2and 3 give, diagrammatically, the relationships
between the point groups D, and C o, and their respective subgroups.

The stability space of a piR D, of a group G, with respect to a subgroup G of G,
is that subspace of the space spanned by the basis functions of the pir D,, all vectors
of which are invariant under G (Kopsky 1983). In table 9 we list the stability spaces
of all pIrR of the point group C,,, with respect to all subgroups of C,o,. The one-
dimensional stability spaces of one-dimensional pir are denoted by the symbol of the
corresponding basis function. Two-dimensional stability spaces of two-dimensional
pirR are denoted by the symbol of the corresponding pIr.
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Table 6. Extended integrity basis for the point group C,,. The part of this table not
explicitly given is identical with the corresponding part of table 5.

X\ X3 X7 Xz
D7 X
D3 Xx? X
D! X2+ Y°,
P, Qs
D; X2+ Y7
Ps, Qs
D3 X*+Y?, P, Qs
PlOs O](:
Df X2+ Y2, P, Q;
PlOy QlO
D7 X? X
D3 X? X
Dy X+ Y, Ps, Qs
PIO, OIO
D; X:+Y?, P, Qs
PIO, 019
D7 X2+ Y% Ps, Qs
PlOa QIQ
Dy X1+ Y7, P, Qs
PIOs Qli)

Table 7. Polynomial abbreviations used in tables 5 and 6.

P =X
P=X3-Y?

Py=X>-3XY?

P=X'-6X’Y’+Y*

Pi=X*~10X3Y?+5XY"

Po=X—15X*Y +15X*Y' - Y®
Po=X"-21X3Y?+35X Y -7XY®
Py=X®—28X°Y?+70X*Y*-28X*Y+ Y*
Po=X"-36X"Y +126X Y ~84X3 Yo +9XY*

Pro= X" ~a5X3Y2+210X°Y* = 210X* Yo +45x7 Y8 - v'0

Q=Y

Q,=2XY

Q;=3X’Y-Y?

Q,=4XY(X?-Y?

Qs=5X*Y-10X2Y>+ Y*
Qe=6X"Y-20X’Y +6XY"
Q-=7X°Y-35X*YI+21X°Y3 - Y7
Qs=8X"Y-56X°Y +56X°Y°-8XY’

Qe=9X"Y —84X°Y + 126 XY -36X2Y + Y°
Qu=10X"Y -120X"Y*+252X5Y* - 120X Y+ Y'°

The stability spaces of all pir of the point group D, are given in table 10 with
respect to all subgroups of Dj,,. The one-dimensional stability spaces of one-
dimensional Pir are again denoted by the corresponding basis functions and two-
dimensional stability spaces of two-dimensional pir by the symbol of the corresponding
PIR. The following notation is introduced to denote the one-dimensional stability

spaces of two-dimensional pir. Let €'’ and e\*', k=1,2,..., 5, denote directions in
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(&)
2)/

)
Z(X)

Figure 1. C,,, and Dy, coordinate system. The = axis is perpendicular to the plane of
the figure.

the space spanned by the basis functions of a two-dimensional pir. The relative
orientation of these directions is shown in figure 4, We denote the one-dimensional
stability spaces of two-dimensional pir by EZ*, E;*', E;'* and E;'*, i=5,6,7,8
and k=1,2,...,5. The symbol E;'*’, for example, denotes the one-dimensional
stability space in the space spanned by the basis functions of the piIR D] which is
along the direction defined by e'*’. These symbols arise in the notation for the
one-dimensional stability spaces for sets of subgroups which are denoted by a single
symbol, e.g. C5¢, j=1,2,...,5. The value of the superscript ‘k* depends on both the
value of the index ‘j° of the set of subgroups and on the value of the subscript ‘i’ of
the stability space. The values of k= k(i,j) are given in table 11. For example, the
value of the superscript k in the symbol for the stability space E:."’ of the point group
Cii7'is k=3 since i=5 and j=2.

Central to the application of group theoretical criteria {Birman 1966, Goldrich and
Birman 1968, Jaric and Birman 1977, Jaric 1981, 1982) to determine the possible
symmetries which can arise via a continuous phase transition is the calculation of
subduction frequencies. Subduction frequencies are the number of times the identity
representation is contained in the pirR D; of G, subduced onto a subgroup G of G,.
The subduction frequency of a rir D, of G, with respect to the subgroup G is equal
to the dimension of the stability space of D; with respect to G. Consequently, the
subduction frequencies of the pir of the point groups C,o, and D, can be found
from tables 9 and 10 where the stability spaces of the pir of the point groups C,,, and
Do, are respectively given.

For each pir of C,y, and D o, we list in table 12 those subgroups, called epikernels,
which satisfy the chain subduction criterion. These are the possible symmetries which
can arise via a phase transition where the transition order parameters transform as
basis functions of the corresponding pIR. Among the subgroups which satisfy the chain
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Table 8. Elements of the point group D,,, and its subgroups. The index j takes the values

j=12,...,5

D,on(10./m.mm,) 1 10. S, 103 57 2. 577 107* 57! 107!
2(\1» 2(‘5) 2(\-\» 2(\3) 21\2) 2(‘1) 2(\5] 21‘4i 21\3) 21‘2)
1 10. 5. 102 57 m, 53 07 5 107"
m(\ll m(‘S) m(\-ﬂ m(\}) ml\li m(\l) ml\S) m(\4) mt\}i m(\Zi

D(10.2,2,) 1 10, 5 103 52 2. 577 10;* 5! 105!
2«\11 2(‘S| 21\4) 2(‘3| 2(\2) 21‘1) 2&\5; 2(‘4) 2(\31 2(‘2)

D34(3.2,/m,) 1 5. : 51 st 1 5. 57 s 50
21\1! m(‘4l 21\1! m(\§l 2(\}) m(\'!) 2(\4» m(yZ) 2(:1 m(\.}l

Di4(3.2,/m,) 1 3. 52 53 571 1 5. 573 - e
21\\! m(‘4) 2(\1' m(\Sr 21‘3) m(‘lj 2(\4] m(‘Z) 21\57 m(\})

Con(10./m.) 1 10. 5. 103 52 2. 577 1073 ! 107!
1 10. 5. 102 57 m. 53 0;* 37 10!

D;,(10.2,m,) 1 10. 5. 103 52 m, 53 072 57! 107
21\}' m(‘Sl 2(\4) mf\B) 21\;) m(\l) 2(\5) m(‘-ﬂ 2(\37 m(‘Z)

D3, (10.m,2,) 1 10. 5. 10:  s? m, 53 00 s 107!
m'\,” 2(‘5) ml\M 2(\3' m\\l) 2(1) mt\.‘v 21‘4) m‘\.’” 2(\2)

Cou(10.m.m, ) 1 10, 5. 103 51 2. o2 103 57! 107!
m“” mt\S) m(\}i m(\}l m(\:) m(‘l) m(\S) m(‘4) m(‘ix mt\:)

Cs,(3.) 1 3. 52 53 57! 1 5. 57 577 50!

DJ(5.2,.1) 1 5. 52 o2 57! 2 2@ 2@ 26 21y

Di(5.12,) 1 5. 52 52 57 2t 2 2 2! 23

Co(10,) 1 10. 5. 100 s 2. -2 s 100!

Ci.(5.m1) 1 5. 52 3 57 m®  m® m®P m® omY

C:(5.1m,) 1 5, 52 o2 501 m" m'® m'® m'® m

Can(T0.) 1 1. 5. U A | s o7 5T oo

Cs(5.) 1 5: 51 577 571

Dy (m.mm'”) 1 2. 20 24" 1 m. m' m’

Df_’/b(z:z&jlz(‘n) 1 2: 2(\_/) 2(\/)

C‘z';;”(Z‘\.“/m_‘\.“) 1 21\1) T mt\‘/i

C‘Z;,”(Z‘\’)/m“”) 1 2(\/) T m(\l]

Cyn(2./m;) 1 2. 1 m.

Ciz:'/)(m:zi\/)m(\/)) 1 2(\]) m mk/l

C‘zt,”(m:m_‘\,”z“”) 1 21\/) m. m‘\,”

ngl(z:m(\'ﬁm(‘/}) 1 2. m(\ll m1\n

c,(m 1 1

cLl2) 1 20

C‘;’\’(Z‘\”) 1 2(\/]

C,(2) 1 2.

C M (m') 1 m\"

L (m) 1 i

C.(m.) 1 m.

Ci(1) 1

subduction criterion listed in table 12, we have underlined for each pir that subgroup
which satisfies the kernel-core criterion (Ascher 1977, Kopsky 1980, 1982, Litvin et al
1982). These subgroups are the kernels of the corresponding pIR. We have also
determined that all pIR of C,, and Dy, except, of course, the identity representation,
satisfy the Landau stability criterion and all pir satisfy the Lifshitz homogeneity
criterion for phase transitions (Landau and Lifshitz 1958).
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Cion
Figure 2. The lattice of subgroups of C,,.
DWOh
Dwo D;Vd 10h D[XJ Dc10v Dy
V ‘A
Vé“?“
Figure 3. The lattice of subgroups of D,.
Table 9. Stability spaces of the PIR of the point group C g,
Cs, X{, X3
Cl()h XT Cln XT,X]_ CS XT7X2+>X-175X27
Cen X7, X3
C, X7, X3, D{, D;, D37, Dy G X7, X3, X7, X3, DS, D¢,
Ca XY, D3, D G, X7, X{,D:, D, D5, Dy D3, Dy, Ds, Dy, D3, Dy
C, Xt1, X3, D:, D, D;, Dy
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51
e/V

el

E(XS )

Figure 4. Directions of vectors ¢!’ and e”, j=1,2,...,5, in the two-dimensional space

\

spanned by the basis functions of two-dimensional PIR.

Table 11. The value of the index k = k(i, j) for specific values of the indices i and j is
given at the intersection of the ith row and jth column.

J
i 1 2 3 4 5
S 1 3 5 2 4
6 1 5 4 3 2
7 1 2 3 4 5
8 1 4 2 5 3

4. Tensorial covariants

Tensorial covariants are linear combinations of components of a tensor which transform
as basis functions of irreducible representations of a group. We derive here tensorial
covariants for a wide variety of tensors and the pir of the point groups C,o, and Dygp.
In table 13 we list the tensors which we consider, their parity, intrinsic symmetry in
Jahn (1949) notation and examples of corresponding physical tensors. We shall use
the following conventional abbreviated notation for the components of symmetric
second-rank tensors u,:

Uy = Uy, U, =u,, Uy =u

Ug=2u,. Us=2uU., Ug = 2Uy,.
The tensor covariants are derived using the tables of Clebsch-Gordan products. This
is the same method which has been applied to obtain the tensorial covariants of the
magnetic and non-magnetic cyrstallographic point groups (Kopsky 1979b). The
tensorial covariants for the tensors given in table 13 for the point groups D;qn, and
C,on are given, respectively, in tables 14 and 15.
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Table 12. For each PIR of the point groups C,,, and Do, we list those subgroups which
satisfy the chain subduction criterion. The epikernel of each PIR is underlined.

Dloh C]l)h

1+ Dion 1+ Cion
2+ Cion 2+ Cs,
3+ D&Y

4+ D’

5+ Db}, Cap 5+ Can
6+ Dy, Cyy 6+ Cay
7+ Ty, Ch, G, 7+ C,
8+ ChL e, ¢ 8+ <
1- Dio - 1- Cio
2- Cia 2- Cspn
3- D}/

4- D)

5— Y, DY, C, 5- C,
6— C‘Zi)vD(Zj)!C_'Z 6~ E_Z_
7~ Ccy”, C”,C, 7= C,
8- CH, ey, C, 8— C,

Table 13. List of tabulated tensors.

Tensor Parity Jahn symbol Physical tensor

€ ~ Pseudoscalar, enanthiomorphism

P - vV Polarisation

u + [va Strain, stress, permittivity

d - VI V3] Piezoelectric tensor, electro-optic coefficient
s + [V Electric compliance or stifiness coefficient
Q + [V?)? Electrostriction, elasto-optic or piezo-optic tensor
g - (v Gyration tensor or optical rotary power

A + viv] Electrogyration tensor

Relations

u~[P®P] Q=stm+ounu

d~PRu stm=%(Q”+Q“)=SU

s~[u®u] Q"' =4Q,-Q,)=gq,

Q~u®u

g~u

A~d

The properties of a physical system in equilibrium must be invariant under the
operations of its symmetry group, while the non-invariant properties must vanish. The
invariant combinations of tensor components are given in the column under D7 in
both tables 14 and 15. Equating all other covariants to zero, one obtains a set of
conditions which the equilibrium tensor components must satisfy. These conditions
are given in brackets in the D] column of both tables 14 and 15.

There are only two types of tensors among those listed where the equilibrium form

can be used to distinguish between the point groups Djon, and C,o,. These are the
tensors denoted by A and by g = Q*",
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Table 15. Tensorial covariants for the point group Cyop-

DT(XT) DI(X7) DIiXD) D3 (X73)
u,+u,, Uy £

[uy=u,] g t8:, 8

Syt Syt 28 P,

S+ 82272812 See diy—dys, dss

S13t 523, 833 dis+dy,

Saat Sss dy +dys

[s;,=52= Sy2t Se6/ 2,
813 = S225 Saa = Sss]

G137+ 235 Gas> G16 ~ 926
(913 = G235 916 = 926]
Al-t_AZS’ Asz

As+ Az, Ayt Ag
[Aa=-Ay,As=As,
Az =Aj3;]

The electrogyration tensor is a physical tensor which transforms as the components
of a tensor of type A. Gyration, G, is the magnitude of rotation of the plane of
polarisation when a plane-polarised beam moves through a crystal (Nye 1964):

where i, j, k=1,2,3, E is an electric fleld and L is the distance transversed through
the crystal. The gyration tensor g vanishes for both point groups C,q, and D,q, and
A is called the electrogyration tensor.

For the equilibrium form of the electrogyration tensor invariant under D,g,, we
have from table 14 that A,,=~A,;. Consequently

Ax(y:) = Ax(:yi = _A,\'(zx) = —A_rl,\:)
and
G= 2Ax(,\'z)(E.\'L_\'L: - E\’LxL: ) (4)

From table 15, the equilibrium form of the electrogyration tensor invariant under C,qp
gives

G = 2Ax(,\':)( E.\‘L.\'L: - E\erL:) + 2Ax(x:)( E,\‘LXL: - EVL)‘LZ)
+Az(xx)(E:L:\'+E:Li)_*—A:(::)E:Li' (5)

Comparing equations (4) and (5) one has that an experimental determination of,
for example, the A,.,, component of the electrogyration tensor can determine which

of the two point groups, C,o, or Dygs, is the point group of the decagonal T-phase
quasicrystal studied by Bendersky (1985, 1986).

The electrostriction effect can also be used to distinguish between the point groups
Cion and D,,. The relationship between strain € and electric field E can be written as

Ejk = dijkEi + Y lm)(jk]EiEm (6)

where d denotes the piezoelectric effect tensor which vanishes for both the point groups
Cion and D)y, and vy is the electrostriction effect tensor. The electrostriction tensor
Yiimyko 18 Symmetric with respect to the interchange of the indices i and m, and also
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to the interchange of the indices j and k. Consequently the electrostriction tensor
transforms as the tensor Q of table 13. A tensor of the type Q can be written as a
sum of a symmetrical and an antisymmetrical part, i.e. Q= Q¥"+gq, with g = Q*"".
From table 13 Q"™ transforms as a tensor s, and from tables 14 and 15 one finds that
the equilibrium form of the tensor s is the same for both point groups Cp, and Do
It is the antisymmetrical part ¢ = Q*™ which can distinguish between these two point
groups.

The equilibrium form of the electrostriction tensor invariant under the point group
D ,on is found from the equilibrium form of the tensors s and g in table 14. We obtain
the following relationships, equation (6):

_— 2 1 2 2
Exx = Y(.v.xl(.rx)Ex+ (‘Y1 XM xx) _ZY(A‘,\'H,\‘,\'))E}‘ + Y(XX)(ZziE:
_ 1 2 2 2
5_\-'\- - (yl.xx)(.rx) —2Y vy )(,\'V\'))Ex+ ‘Y(.‘(.\'H.\:\‘]E,\‘ + ‘Y(xx)(::)E:

2

E.. = yl::)(xx)Ei+ y{::;(v\g\‘)Ei_F ‘Y(::)(::)E:
E_\': = Z‘Y(:_“)(,\':)E)‘E:

(7)

Ex = 27(\':)(}‘2)EXE:

E.\'}‘ = Z‘Y(xy)(x,\')Ev\’E_\"
For the point group C,y, the equilibrium form of the electrostriction tensor is found
in table 15. The relationships, equation (6), are those given in equation (7) with the

following additional terms:

E}c\‘ = + (‘y(x.\')l.\"\‘) - ‘le.\')(xx))E\‘E_\‘

Eyyp T T (‘Y(xx)(.\'\‘l - ‘Y(.\‘)‘)(x.r))ExE_\
8:: =
(8)
E_\': =...t (7(_\':)(:\‘) - le.v)(,\‘:))ExE:
Ex = ... (Y(z,\')t:,\') - 7(:.\‘)(,\':))E,\'E:
€, ... T (y(xx)(.\’}‘) ~ Y \'x))E:\' = Yixxrix T 71.\'_\'1(.\:\))5_%'-

Experimental determination of any of these additional terms would then determine
which of the two point groups, C,o, or Dy, is the symmetry group of the decagonal
T-phase quasicrystal.
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