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For an arbitrary one-dimensional quasiperiodic tiling constructed via the grid method with
periodically spaced grids, an algebraic equation is derived for the positions of the vertices
dependent on a single variable, the cardinal position of the vertices.

I. INTRODUCTION

Interest in quasiperiodic tiling predates the 1984 discov-
ery by Shechtman et al." of an alloy of aluminum and manga-
nese that exhibits an electron diffraction pattern with icosa-
hedral symmetry. In 1981 de Bruijn® developed a grid
method to construct the prototypic two-dimensional quasi-
periodic Penrose tilings,>® and showed that these tilings
could also be constructed by a projection method from a
higher-dimensional space. Mackay®’ constructed a three-
dimensional icosahedral quasiperiodic tiling using a pair of
unit cells. The projection method was generalized to the con-
struction of three-dimensional icosahedral quasiperiodic til-
ings by Kramer and Neri.® With the discovery by Shechtman
et al." much work has been published on the construction of
three-dimensional quasiperiodic tilings using grid meth-
ods®!! and projection methods.'>~° Gahler and Rhyner!'
have shown the equivalence of the two methods. We shall
consider in this paper one-dimensional quasiperiodic tilings
constructed via the grid method with periodically spaced
grids. Those tilings constructed using quasiperiodically
spaced grids or tilings generated by inflation rules not ob-
tainable by the projection method®' will not be considered.

In 1986, using special sequences of ones and zeros intro-
duced by de Bruijn,?* Litvin and Litvin® derived an algebra-
ic equation for the positions of the vertices of a one-dimen-
sional quasiperiodic tiling consisting of two basic tilings with
the equation dependent on a single index, the cardinal posi-
tion of the vertices. In this paper, we shall derive an analo-
gous algebraic equation for the positions of the vertices of a
one-dimensional quasiperiodic tiling consisting of an arbi-
trary number of basic tilings. In Sec. II we define an arbitrary
one-dimensional quasiperiodic tiling using the grid method
and state the algebraic equation for the vertices of this tiling.
In Sec. III we give an inductive proof of this equation. In Sec.
IV we compare this work with the results of Ref. 23.

Il. ARBITRARY ONE-DIMENSIONAL QUASIPERIODIC
TILING

We construct an arbitrary one-dimensional quasiperio-
dic tiling with p basic tilings using the grid method as fol-
lows: On a number line we plot the p set of points

{nt; + y,|nez}, i=1.2,..p, (1
where we shall assume that the ratios 2,/7, i#j,
i,j=1,2,...,p, are irrational and the y; are constants such

that y; < ¢, for i = 1,2,...,p. This construct divides the num-
ber line into segments that can be characterized by a p-tuple

740 J. Math. Phys. 30 (3), March 1989

0022-2488/89/030740-04$02.50

of integers (M,,M,,..,M, ), where the (M, M,,....M )" seg-
ment is defined by

XMt <x < (M, + 1)1,NM,t,
X< (Mo + DN MM, <x < (M, + 1)t} (2)

For each p-tuple (M,,M,,...,.M,) determined above we con-
struct on a second number line for a given p-tuple of real
numbers (a,,a,,...,@, ) the point

X(M,,Mz,...,Mp) =Ma, +Ma,+ - +M,a,. (3)

The problem that we consider is the derivation of an algebra-
ic equation dependent on a single index, the cardinal position
of the vertices, for the set of points defined by Eq. (3) for all
p-tuples of integers (M,,M,,...,.M,) defined by Eqgs. (1) and
(2). We shall prove the following theorem.

Theorem: Let N= M, + M, + --- + M, be the cardi-
nal position of the point X(M,,M,,....M,) defined by Eq.
(3). Then the position X(XN) is given by

p Y. — ¥ o\
X(N)=2 (N+1+Z——’)(Z—’) a;,
i=1 m=1 I KZu ity

. 4)

where L 1 denotes theinteger function, L y 1 is the great-
est integer less than or equal to y.

Il. PROOF OF EQ. (4)

We shall give an inductive proof of Eq. (4). We shall
prove that the theorem is correct for the cases of p =2 and
p =13, and then for an arbitrary integer g, prove that it is
correct for the case p = g 4 1 assuming the equation is valid
forthecase p =g.

A.p=2
The vertices of the tilings in the case p = 2 are given by
X(M.M,) = Ma, + M,a,. 39

We subdivide this set of points into two subsets; the first, the
vertices at the end of tilings of length @, and the second, the
vertices at the end of tilings of length a,. We denote the
points of these two subsets, respectively, as X(N,) and
X(N,), where N, and N, denote the cardinal positions of the
vertices in the tiling. We have that

X(N)=Ma,+ | (Mt +v,— 1)/t | a,,  (5a)
X(N,) = I_(Mztz+7’z—7’1)/t1J“1 + Msa,,  (5b)

where
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Ny=M,+ L(Mt,+y,—9,)/t,d, (6a)

N,=M,+ L(Mt, +y,—v))/t, 4. (6b)
We can invert Eqgs. (6): SinceLydl =y — A, where
0<A <1, we can rewrite Eq. (6a) as

Ni=M,+ (M, +y,—1y)/t,— A
and consequently,
N+ 1=M[(t;, + ,)/t,] + (V1 — v2)/t, + (1 — A),
(N, +1)—2 +(7’2_"‘)=M[+(1—A) L

L+t L+t L+t

Since M, is an integer and 0<(1 — A)t,/ (¢, + 1,) < 1, we

have on taking the integer function of both sides of the pre-
vious equation that

M, = L(N1+ 1)[32/(tl+t2)] + (7’2_7’1)/(’1 +22)J,

2 -1
M1=I_(N.+1+——72_7')(2 i) J
L k=11

In an analogous manner we derive from Eq. (6b) that

2 _
M, = [(N2+1+"—‘_—ﬁ)(22) lJ. (7b)
1 K=11

The coefficient of @, in Eq. (5a) is, using Eq. (6a), equal to
N, —M,, and using Eq. (7a) and the relationship that
— Lyd=L —yd +1,wehave

(7a)

N,—M,=N, +1+ l_—(N1+1+7—2t_—”‘—)
2 t -1 2
()]
k=ltk
n-—-n\{s Ly’
N, —M, = (N,+1+-‘——2—)(Z—2) .
L K=t Iy

(8a)
The coefficient of @, in Eq. (5b) is, using Eq. (6b), equal to
N, — M,, and using Eq. (7b) we have

_ 2 -1
Ny, — M, = (N2+1+1z_&)(2 g) _
L K= b

(8b)
We can now rewrite Egs. (5) as

_ 2 -1
X(N,>=[(N,+1+12—74)(2 —"—) a,
L) La=g i 52 |
Yi—Y2 AN
N +1+——)( —) a
* _( ' 4 ;gl L _ ’
_ 2 -1
X(N,) = ,.(N2+1+]L—71—)(2 i) a,
t K1 8 J
(N +1 7’1—7’2)( = tz)—l
+ TR 4 L) ).
L. ’ 4 k§=:l L/ ’

and since the cardinal positions of the two subsets of vertices
are mutually exclusive we can write a single equation for the
positions of the vertices

X(N)=|-(N+1+Iﬂ_l_)(§2: _tL)—IJ a
L) k=11
Yi—¥ AN
+ (N+1+ ! 2)(2—2) ay,
L K=

which proves Eq. (4) for the case where p = 2.
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B.p=3

The vertices of the tilings in the case p = 3 are given by

XM M,M,) =Ma, + Mya, + Msa,. (3")
We subdivide this set of points into three subsets; the first,
the vertices at the end of tilings of length a,, the second, the
vertices at the end of tilings of length a,, and the third, the
vertices at the end of tilings of length a,. We denote these
subsets of points, respectively, as X(N,), X(¥,), and X(N,),
where N,, N,, and N, denote the cardinal positions of the
vertices in the tiling. We have that

XIN)=Ma,+ LM, +v,—y,)/t,da,

+ LMt + vy, — 1)/t da,, (9a)
XN))=LMt,+v,— )/ tyda + Maa,
+ LMoty + v, — v/t A a,, (9b)
X(N;) = LMyt +ys—y)/t da,
+ L(Msts +y; — v2)/ 1, d a, + Msas, (9¢c)
where
N=M+ LMt +v,—7)/t1
+ LMt + v, —73)/td, (10a)
No=M,+ L(Mt; +y,— )/t ]
+ LMyt + 7, — v3) /55, (10b)
Ny=M;+ L (Mst; + 75— 1,)/t,
+ L(M3t;+ 95— y5) /8, . (10c)
We can invert Eqgs. (10): Since**
La+pBd —1<Lad + LBIKLa+ A, (11)

from Eq. (10a) we have

I\Ml(_t'l-_i_t—l)"" Vi—”? + i—¥s J_1<N1_M1

L & L 5
<|'M1(i+_f1_)+7’1_‘7’2+7’|—?’34|‘
L 4 t, 5

From this it follows that

M,———1< l-(Nl+1+72'_71 +73—7’1)

t ty

3 t -1
x(z —’) <M,.
k=1 tk

Since M, — 1 and M, are consecutive integers we have

1‘11= I'(N1+l+ Y2— ¥ + 7/3"“71)

t ty

><( 3 ")_I I
- + y
k§=:1 t

where J = O or 1. This constant /is determined by taking the
limit of Eq. (12) then ¢, goes to infinity. In this limit we
obtain the p = 2 case and Eq. (12) must become identical
with Eq. (7a). We find that 7 = 0 and

3 —1
wi= | (e BB 2mm) (5 8)7
L t K=1 b

(13a)

(12)
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In an analogous manner we invert Eq. (10b) and (10c) and

obtain
3 _
M,= (N2+1+7/‘_72+7’3_7’2)(2 ’_2) J
L 4 £ K=1 I
(13b)
3 _
M, = (N3+1+71—73+72—73)(2 2) _
L L t, Pt
(13c)

Equations (13) are then substituted in Eq. (9). Denoting
the coefficient of @, in Eq. (9a) by C,,, we have

C12= |.|_(Nl+1+72_71 _’_7/3—7/1)
5 4
X(i i)_l _t1_+7’1—7’2
K=1 1 153 L

C,, = Nl+1+7’| 7’2+7’3_7’2)
L 1 t
3 1
(3402
k=1 &g t2
C, = (N|+1+ Yi—% + 7’3—7’2)
| 51 I

where [ is some integer. On taking the limit of 7, going to
infinity we obtain the p = 2 case and this coefficient must
then become identical with Eq. (8a). Consequently, / =0
and

3 — 1
Cp= (N1+1+7'_72+73””2)(2 ’—2> .
L £ K=1 &g

In an analogous manner the coefficients C; of g; in Egs. (9),
i=1,2,3 corresponding to Eqs. (9a), (9b), and (9c), re-
spectively, and j = 1,2,3, can be shown to be given by

| (o £ 22 (22) ]

Since the cardinal positions N,, N,, and N; of Egs. (9) are
mutually exclusive, we then can write a single equation for
the positions of the vertices given by Egs. (9),

=) (347 o

(14)

3 3
XM=Yy (N+1+ s

ji=1 m=1

proving the theorem, Eq. (4), for the case p = 3.

In the general case we subdivide the set of points repre-
senting the vertices of the tiling into p subsets X(X¥,),
i =1,2,...,p, where N, is the cardinal positions of the vertices
at the end of tilings of length a,. We have

X(N;) = z 4, 1= 1,2,..,p, (15)
Jj=1
where
Cij = L (Miti + Yi - 7/])t_] J 4 l’j'__ 112,--"p’ (16)
and
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N, = z Cy» (17)
j=1
Assuming that the theorem, Eq. (4), is valid for the case

P = g, we have for the case p = g that

C I_(N i i —myj_)(kglt%)_lJ ’

m=1
Lji=1.2,..8, (18)

and in particular that M; = C; for i = 1,2,...,8.
For the case p =g + 1, from Egs. (16) and (17) we
have

e+1 | M.t C— .
Ni= Z i 1+1/1 7’1 ,
=1 5

and therefore

g+1t,~ g+7/ 7 g+ 1
N+l=M Y —+ —’+1—2A

=14 = i j=1
where A, is defined by

LM, +y, —v))/t; 1 =Mt + v,
It follows that

g+ 1 =V g+ 1 ti —1
\.(Ni+1+2—7’ 7)(2—) J=M.-+1,
= K=1 b

(19)

—¥)/t — A

where I is some integer. Equation (19) in the limit that ¢,
goes to infinity, g#i, must become the expression for
M, = C, given by Eq. (18), for i = j, in the case p = g. Con-
sequently, / = 0 and for the casep =g + 1,

(g ) (57

m=1
Substituting this into Eq. (16) inthe case of p=g + 1 we
have

C. =

o= ||y o

— +1 .\ -1
Ym 7’1) (gz _5_) J + 1’

tm k=1 tk
where I is some integer. This equation is the limit that ¢z ,
g7#1,j goes to infinity must become the expression for C;
given in Eq. (18) in the case p = g. Consequently, 7 =0.
Since the sets of cardinal positions N,, i = 1,2,....g + 1, are

mutually exclusive, Egs. (15), for p = g + 1 can be written
as a single equation

a
I
N
=
+
+

M
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g+1 g+1 — . g+1 ¢\ 1!
xwnm =73 <N+1+ Y _7’_"'_&)( —’—) Jaj,
=1 me1 t,, K=t

proving the theorem given in Eq. (4).
IV. COMPARISON WITH THE RESULTS OF LITVIN AND
LITVIN23

The positions X '(N) of the vertices of a quasiperiodic
tiling with p =2 basic tilings of lengths @, = sin § and
a, = cos 6, constructed via a projection method was given in
Eq. (9) of Ref. 23,

X'(N)=Na,+(Ly* + N/a* 1 — Ly* 1)(a, —a,),

X(N) = [(N+l+ rz—rl)(t1+tz)"J a,
L 15

+[N—

X(N) = [N(t1jtz)—l+

2

L+Y— N a
th+1t,

+ [N—
t2 tl +t2

and

where a* and y* are constants. This can be rewritten as
X'(N)=LN/a*+y*— Ly*1 la,

4+ (N— LN/a* +y*~ Ly*] 1)a,
(20)

From Eq. (4) for p = 2 we have

X(N) = [(N+1+—73;’1) (1+i)_lJa1
t2 t2

_ -1
+ [(N+1+u)(1+'_z) J
tl tl

from which we derive

-1
(ver 2z (125)" ||,
L. t2 t2

N(tx‘*'tz)_l_*_ LAY:— Y J ]02,

X(N)= I'N(t1+t2)—l+

2] L+t

Lt+Y,—" *[t2+72—71 JJ a,

V- [N(t_izz_)+ hiti=n
) L+t

+ Lt (a; + a,).
t+1t,

Comparing Eqs. (20) and (21) we have

a* = (4, + 1)/t

Y=+ 1 —r)/(+ 1),
and the positions of the vertices given by Egs. (20) and (21)
are related by a change in origin

X(N)=X"(N) + L(tz+7’2—7’1)/(t1 +t2)J (a, + a,).
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