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By definition, magnetoelectric domains exhibit different tensor components of the magnetoelectric 
tensor when observed from the same coordinate system. Since direct detection of the magnetoelectric 
tensor components is difficult, it is advantageous to know in which other material tensor properties the 
rnagnetoelectric domains differ. If two magnetoelectric bulk structures (domain states) possess different 
spontaneous deformation, they can be simply observed in an optical microscope. Consequently, we 
limit our attention to non-ferroelastic magnetoelectric phases in which the domain states of different 
domains exhibit the same (zero) spontaneous deformation. The distinction between two non-ferroelastic 
magnetoelectric domains is determined by a point group generated by the point group of the domain 
state of the first domain and a space-time operation that relates this first domain state to the domain 
state of the second domain. The resulting point group is called the non-ferroelastic magnetoelectric 
twin law of the two domain states. Such an analysis is an extension of the recent work on tensor 
distinction of non-ferroelastic non-magnetic where it is shown that non-magnetic twin laws 
are of the same mathematical structure as antisymmetric (dichromatic) point groups. We shall show 
that the corresponding magnetic twin laws are of the same mathematical structure as double antisym- 
metry point groups.' We shall list all twin laws of two non-ferroelastic magnetoelectric domain states. 
For each of these twin laws we shall give the form of important property tensors that are different in 
the two magnetoelectric domain states under consideration. 
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1. INTRODUCTION 

Macroscopic properties that are different in two domains are determined by the 
relation between their domain states, i.e. the corresponding bulk structures of 
domains in polydomain samples. Two domain states Si and S, form a domain pa? 
{S,, S,). Domain pairs {S,, Sk) can be divided into two types: In a non-ferroelastic 
domain pair the structures S, and S, possess the same (zero) spontaneous defor- 
mation, whereas in a ferroelastic domain pair they exhibit different spontaneous 
deformations. Since the tensor of spontaneous deformation transforms in the same 
manner as the optical indicatrix, the domain states of a ferroelastic domain pair 
can be easily distinguished in a polarizing microscope. The domain states of a non- 
ferroelastic domain pair can not be distinguished in this way. 

The relationship between domain states of a domain pair {S,, S,} can be expressed 
in terms of a group called the twin law of the domain pair. This group, denoted 
by J, for non-magnetic non-ferroelastic domain pairs, can be written as' 
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where F is an invariance group of both Si and Sk and the star on the element a of 
J denotes that a interexchanges the two domain states, i.e. asi  = Sk and US, = 
Si. Because of the existence of an element a which interexchanges the two domain 
states, equation (1) is referred to as a transposable twin law. (In previous work on 
twin laws, the symbol a' was used to denote an element a of J which interexchanges 
the two domain states. Here we use a star notation to preserve the primed notation 
for magnetic group elements.) 

We extend here the concept of a transposable twin law from that of a non- 
magnetic twin law, where J is a non-magnetic point group,'v2 to that of a magnetic 
transposable twin law, where J is a magnetic point group. Magnetic transposable 
twin laws are then used to describe non-ferroelastic magnetoelectric domain pairs 
and the tensor distinction of domain states in such pairs is then considered. 

2. MAGNETIC TWIN LAWS 

Let J denote a magnetic point group, i.e. a point group belonging to one of the 
122 classes of crystallographic magnetic point groups (Here we include the 32 classes 
of point groups which are direct products of a non-magnetic point group and the 
group consisting of the identity and time inversion.) Let F denote a subgroup of 
index two of J. A magnetic twin law, equation (I), can be denoted, in a double 
group notation, by J [ q .  An alternative single group notation can be had by using 
the Hermann-Mauguin (International) notation for the magnetic group J. Symbols 
in the group symbol representing elements of J not contained in F a r e  stared. For 
example, the magnetic transposable twin laws 2,lm:[2,] and 4~m~m,[m~m~2,]  are 
written in the single group notation, respectively, as 2,lm:* and 4:*mim*,. 

The equivalence of two magnetic transposable twin laws is defined as follows: 
Two magnetic transposable twin laws J,[F,] and J,[F,] are said to be equivalent, 
and to belong to the same class of magnetic transposable twin laws, if there exists 
a transformation that simultaneously transforms J, into J, and F, into F,. The 
derivation of all classes of magnetic transposable twin laws is considered elsewhere5 

TABLE I 
Magnetic twin laws of the family 222 

Double Group Single Group Double Anti-symmetry 
Notation Notation Notation 
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where it is shown that there are 380 such classes. A listing of representative magnetic 
transposable twin laws J [ F ] ,  one from each class, with J belonging to the family 
of the non-magnetic point group 222 is given in Table I. These twin laws are given 
in double group notation in column 1 and single group notation in column 2. In 
column 3, a notation based on the Zamorzaev and S o k ~ l o v ~ . ~  double-antisymmetry 
notation is given. This notation is explained in the following section. 

3. RELATIONSHIP T O  DOUBLE ANTISYMMETRY GROUPS 

The magnetic twin laws derived above are mathematically equivalent, i.e. have the 
same mathematical structure, as the double-antisymmetry point groups introduced 
by Zamorzaev and S o k ~ l o v . ~ . ~  Double-antisymmetry point groups are defined in 
the following context: All points of a finite object are assigned two signs, each of 
which can take one of two values usually interpreted as a plus or minus sign. In 
addition to the point group transformations of the unsigned finite object, one 
defines transformations of the signs, a transformation 1' which reverses the value 
of the first sign, and l* which reverses the value of the second sign. A double- 
antisymmetry point group is an invariance group of such a signed finite object, i.e. 
the group of those point group transformations and point group transformations 
coupled with l ' ,  I*, or lr* which leave the signed finite object invariant. 

A magnetic transposable twin law, equation (I) ,  as a double-antisymmetry group, 
contains point group transformations not coupled with 1' nor I*,  and point group 
transformations coupled with l', I*, or 1'* where now 1' denotes time inversion 
and l* denotes that the point group element interexchanges the two domain states. 
Consequently, the mathematical structure of magnetic twin laws is the same as 
double-antisymmetry groups. To  each magnetic transposable twin law there exists 
a corresponding double-antisymmetry group. However the converse is not true, as 
there are no magnetic transposable twin laws which contain the element I*. 

There are two notations which have been introduced for double-antisymmetric 
point groups: The first is identical with the single group notation introduced above. 
The second notation consists of a) a symbol G of a non-magnetic point group with 
the symbol (H) to denote a subgroup of index two of G of elements not coupled 
with l', and/or {H) a subgroup of index two of G of elements not coupled with I* ,  
b) such a symbol multiplied by l ' ,  I*, or 1'* or c) a symbol G(H){K(R)) where R 
is a subgroup of index 4 of G not coupled with either 1' or I*. For example, 
2JY2,{2,) denotes the group consisting of all elements of G = 2,2,2, = [ I ,  2,, 2,, 
2,] where the elements of G not in the subgroup H = 2, = [ I ,  2,] are coupled 
with I*. This then is the group consisting of the elements [ l ,  2,*, 2,*, 2,]. This 
second notation for double-antisymmetric point groups, for those double-antisym- 
metric point groups corresponding to the magnetic transposable twin laws listed in 
column 1 of Table I, is given in column 3 of that table. 

4. NON-FERROELASTIC MAGNETOELECTRIC TWIN LAWS AND 
TENSOR DISTINCTION 

Let P denote the n-th product of a polar vector tensor, and "a" and "e" rank 
zero tensors that change sign, respectively, under time inversion 1' and spatial 
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inversion I. The magnetoelectric effect tensor transforms as a second rank tensor 
of the type aeV2. The spontaneous deformation tensor transforms as [V2] where 
the brackets denote symmetrization of the indices. Of the 380 magnetic transposable 
twin laws, 140 are non-ferroelastic magnetoelectric twin laws, i.e. where the two 
domains have the same (zero) spontaneous deformation tensor and distinct mag- 
netoelectric tensors. Of the six magnetic transposable twin laws listed in Table I, 
only the second and fourth are non-ferroelastic magnetoelectric twin laws. 

From the Taylor expansion of the density of stored free enthalpy, the polarization 
P, magnetization M, and mechanical deformation s can be written in a third order 
expansion in terms of the electric field E, magnetic field H, and stress tensor T 
as7 

where the names of the coefficients in the above equations and their transforma- 
tional properties are given in Table 11. 

For each non-ferroelastic magnetoelectric twin law we have considered which of 
the above physical property tensors are different in the two magnetoelectric domain 
states under ~onsiderat ion.~ For example, for the non-ferroelastic magnetoelectric 
twin law 2,2,,2,1'[2~2~2,], among those tensors listed in Table 11, the types of tensors 

TABLE I1 
Transformation properties of coefficients 

Name of Coefficient Transformation 

4' Spontaneous polarization V 

X? Spontaneous magnetization aeV 

s !, Spontaneous deformation [V21 

Ki  j Electric susceptibility IV21 

Xi, Magnetic susceptibility [V21 

Qi/ Magnetoelectric susceptibility aeV2 

d i j ,  Piezoelectric coefficient VIV21 

gi,k Piezomagnetic coefficient aeV[V21 

Ki jk  non-linear electric susceptibility [v31 

Xi ik  Non-linear magnetic susceptibility ae[V31 

Qijk First non-linear magnetoelectric susceptibility aeV[V21 

p i  j r  Second non-linear magnetoelectric susceptibility VIV21 
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TABLE I11 
Tensor distinction for 2&2,1'[227,3 

Tensor First Domain 

aeV2 O A O  
B  0 0 
0 0 0  

aeV[V21 O O O O A O  
0 0 0 B 0 0  
C D E O O O  

ae[V31 0 0 0 0  
0 0 0  
A B C  

Second Domain 

which are different in the two magnetoelectric domain states are listed in Table 
111 in the notation of reference (11). The form of various tensors invariant under 
magnetic point groups can be found in references (9) and (10). However, the forms 
of the tensors in Table 111 have been derived as follows: The form of the tensors 
in the first domain are invariant under 2:2;2,. These have been derived using tables 
of the form of tensors invariant under non-magnetic point groups1' and a general 
method, reference (12), to determine the form of tensors invariant under magnetic 
point groups from known tables of the form of tensors invariant under non-magnetic 
point groups. The form of the tensors in the second domain have been derived by 
transforming the corresponding tensor in the first domain by a* = 1'. 

In this case, the two domains with distinct magnetoelectric effect tensors can 
also be distinguished by their spontaneous magnetization, piezomagnetic coeffi- 
cient, and by their non-linear magnetic and first non-linear magnetoelectric sus- 
ceptibilities. 
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