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Abstract 

An algorithmic procedure is presented to determine the 
maximal subgroups of magnetic space groups and 
subperiodic groups from the maximal subgroups of 
non-magnetic space groups and subperiodic groups. As 
an example of the application of this procedure, the 
maximal subgroups of the magnetic frieze groups are 
derived and tabulated. 

1. Introduction 

Among the information provided in Volume A of 
International Tables for Crystallography (1983) 
[abbreviated here as ITC(1983)] on non-magnetic 
space groups are tabulations of the maximal 
subgroups of the space groups. In this paper, we 
set forth a procedure to derive the maximal 
subgroups of magnetic space groups. This procedure 
will be used (Litvin, 1996) in the compilation of 
information on magnetic groups in the format and 
content of ITC(1983). The knowledge of the 
maximal subgroups of magnetic groups, in particu- 
lar, can be applied in the analysis of phase 
transitions in magnetic materials (CrackneU, 1975). 
This procedure is also valid for magnetic crystal- 
lographic subperiodic groups, i.e. magnetic layer, 
rod and frieze groups. 

In §2, we review Hermann's (1929) theorem on 
subgroups of space groups and the classification of 
maximal subgroups used in ITC(1983). In §3, we set out 
a procedure to derive the maximal subgroups of 
magnetic space groups and subperiodic groups. In ~4, 
as an example, we derive the maximal subgroups of the 
magnetic frieze groups. 

2. Maximal subgroups 

Hermann's theorem (Hermann, 1929; see also Ope- 
chowski, 1986) states that every subgroup of a space 
group G is an equi-class subgroup of an equi- 
translational subgroup of G. It follows that every 
maximal subgroup of a space group G is either a 
maximal equi-elass subgroup or a maximal equi- 
translational subgroup. The ITC(1983) classification of 
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maximal subgroups of space groups is based on this 
fact. 

Consequently, the ITC(1983) classification classifies 
the maximal subgroups into two types: type I, equi- 
translational (translationengleiche) maximal subgroups; 
and type 0, equi-class (klassengleiche) maximal sub- 
groups. 

In addition, there is the subclassification into (i) 
maximal non-isomorphic non-enantiomorphic sub- 
groups, and (ii) maximal isomorphic and enantio- 
morphic subgroups. As the number of maximal 
isomorphic and enantiomorphic subgroups is infinite, 
only those of lowest index are explicitly given 
[ITC(1983)]. 

For space groups, the terminology 'isomorphic' can 
be used for the longer expression 'belonging to the 
same type (class)' and is justified through Bieber- 
bach's (1912) theorem. Since Bieberbach's theorem is 
not valid for subperiodic groups, we cannot use this 
terminology when considering subperiodic groups. As 
we derive a single procedure for determining the 
maximal subgroups of both magnetic space groups 
and subperiodic groups, we shall use the terminology 
isotypic for the longer expression 'belonging to the 
same type (class)'. In this new terminology, the sub- 
classification is (i) maximal non-isotypic non-enantio- 
morphic subgroups, and (ii) maximal isotypic sub- 
groups and enantiomorphic subgroups of lowest 
index. 

Following ITC(1983), the complete classification of 
maximal subgroups S of space groups G is then: 

Maximal non-isotypic non-enantiomorphic sub- 
groups: I maximal equi-translational subgroups; Ha 
maximal equi-class subgroups where the conventional 
unit cells of G and S are the same; IIb maximal equi- 
class subgroups where the conventional cell of S is 
larger than that of G. Maximal isotypic and enantio- 
morphic subgroups of lowest index: IIc maximal equi- 
class subgroups. 

We note that in ITC(1983) every maximal subgroup S 
of G of types I and IIa are explicitly listed. For type IIb 
and IIc subgroups, one entry there may correspond to 
more than one subgroup. One entry may correspond to 
subgroups whose differences can be expressed as 
different conventional origins of S with respect to G 
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or with cell enlargements in different directions (see IIc maximal subgroups of G beyond that of the lowest 
also Billiet, 1981). index. 

3. Maximal subgroups of magnetic groups 

Let G denote a space group or subperiodic group and 1' 
the time inversion group consisting of two elements, 
identity, 1, and time inversion, 1'. GI '  will denote the 
group that is the direct product of G and 1'. We will 
denote by GIH] the group where all elements of G not 
contained in the subgroup H of index 2 are multiplied by 
time inversion. 

To obtain a survey of aU magnetic space groups or 
subperiodic groups, one begins by listing, e.g. for 
magnetic space groups, one representative space group 
G from each type of space group. That is, one chooses 
from all the space groups belonging to this space-group 
type a single specific space group to be included in the 
survey. For each group G, one adds to this list the group 
GI '  and one representative group G[H] from each type 
of group of this form. A list of the groups G, GI '  and 
G[H] for a specific group G is referred to as the reduced 
magnetic superfamily of G (Opechowski, 1986). A 
survey of all magnetic space groups or subperiodic 
groups consists of a listing of the reduced magnetic 
superfamilies of all the space groups or subperiodic 
groups. We shall refer to such a list simply as 'the list of 
magnetic space groups or subperiodic groups'. 

A procedure to find the maximal subgroups of 
magnetic space groups or subperiodic groups is as 
follows (a proof is given in Appendix A): 

(i) The maximal subgroups S of G are determined and 
classified in types I, l/a, ID and IIc. We assume in the 
following steps that these maximal subgroups are 
known. 

(ii) The maximal subgroups of GI '  are: 
(a) the group G is a maximal subgroup of GI '  and is 

classified as a type I maximal subgroup; 
(b) for each maximal subgroup S of G, SI'  is a 

maximal subgroup of GI ' .  Each group SI'  is classified 
as the same type of maximal subgroup as S; 

(c) for each maximal subgroup S2 of index 2 in G, 
G[S2] is a maximal subgroup of GI' .  Each group G[S2] 
is classified as a maximal subgroup of type I if S2 and G 
have the same translational subgroups and as type ID if 
not. 

(iii) The maximal subgroups of G[I-I] are: 
(a) H is a subgroup of index two of G[It] and 

consequently is a maximal subgroup; 
(b) the remaining maximal subgroups of G[I-I] are 

determined as follows: (i) one determines the maximal 
subgroups So ~ H of G; (ii) for each such maximal 
subgroup S o one determines all subgroups K, of index 
two of S o, which are also subgroups of H. Each group 
S60K] is a maximal subgroup of G[H]. As we shall 
show below, to determine the maximal subgroups of 
G[H] of type llc may require the knowledge of the type 

4. Maximal subgroups of the magnetic frieze groups 

Frieze groups are two-dimensional groups whose 
translational subgroup is one-dimensional. The seven 
types of frieze groups are listed in Table 1. In the first 
and second columns, we give, respectively, a sequential 
numbering and a symbol for each frieze-group type. 
Each frieze-group-type symbol will also be taken as the 
symbol for the representative frieze group which we 
consider and which is defined in each row of Table 1. 
The translational subgroup of each of these groups is 
p = ((Ell, 0)), where (Ell, 0) denotes the translation 
that generates the translational subgroup. Each repre- 
sentative frieze group is defined by this translational 
subgroup and a set of coset representatives of the coset 
decomposition of the frieze group with respect to this 
translational subgroup. The coset representatives of 
each representative frieze group are listed, in Table 1, 
to the right of the symbol of that group. 

There are 31 types of magnetic frieze group. These 
correspond to the 31 types of 'black and white' frieze 
groups where 1' is interpreted as a color-reversing 
operation (Belov, 1956) and to the 31 types of 'anti- 
symmetry' frieze groups where 1' is interpreted as a 
sign-reversing operation (Palistrant & Zamorzaev, 
1964; Zamorzaev, 1976). Symbols and numbering for 
the 31 types of magnetic frieze groups are as follows: 
the symbols and numbering of the seven magnetic 
frieze-group types of the form G are given in Table 1. 
The numbering is given as N.0, where N denotes a 
sequential numbering from one to seven. The symbols 
for the 7 magnetic frieze-group types of the form GI '  
are the symbols for the group G followed by 1'. Their 
numbering is N. 1. The 17 magnetic frieze-group types 
of the form G0"I] are surveyed in Table 2. The 
numbering of these types, given in the first column, is 
N.M, where M is a sequential numbering starting with 
2. Symbols for these types of group are given in the 
second and third columns of Table 2. One symbol is that 
of G[H] and the other a primed symbol based on the 
symbol for G. 

The same symbols for magnetic frieze-group types 
are also used as symbols for the representative group 
from each type. These groups are defined by their 
translational subgroup p or p '  = ((El 1, 0)') and the 
coset representatives listed in Tables 1 and 2. A prime 
denotes multiplication with 1'. 

The maximal subgroups of the magnetic frieze groups 
are given in Table 3. In the first column is given a 
numbering to each magnetic frieze group that corre- 
sponds to the numbering of the corresponding magnetic 
frieze-group types. The N in the numbering N.M of 
these 31 groups denotes the reduced magnetic super- 
family to which the group belongs. This is followed by 
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Table 1. The seven frieze-group types and their 
representative groups 

Type Coset representatives 

1.o pl (elo, o) 
2.0 p2 (El0, 0) (210, 0) 
3.0 plml (El0, 0) (taxi0, 0) 
4.0 pllm (El0, 0) (m~10, 0) 
5.0 pl lg  (El0, 0) (myl-~, 0) 
6.0 p2mm (El0, 0) (210, 0) 
7.0 p2mg (El0, 0) (210, 0) 

(m~10, 0) (my[O, O) 
(m~1½,0) (my l½,0) 

Table 2. The 17 magnetic frieze-group types of the form 
G[H] and their representative groups 

Type Coset representatives 

1.2 p ' l  pl[P21 ] (El0, 0) 
2.2 p2' p2[pl] (El0, 0) (210, 0)' 
2.3 p '2 p2[P22] (El0, 0) (210, 0) 
3.2 plm'l plml[pl] (El0, 0) (rex10, 0)' 
3.3 p'lml plml[P21mll (El0,0) (rex10, 0) 
4.2 p l lm'  pl lm[pl] (El0, 0) (my10, 0)' 
4 .3p ' l lm pllm[p211m] (El0,0) (my10,0) 
4 .4p ' l lm '  pllm[P211g] (el0,0)(m,10,0)' 
5.2 p l lg '  pl lg[pl] (El0, 0) (myl ~, 0)' 
6.2p2'mm' p2mm[plml] (El0,0) (210,0)' (taxi0,0) (my10,0)' 
6.3p2'm'm p2mm[pllm] (El0,0) (210,0)' (m~10,0)' (myl0,0) 
6.4p2m'm' p2mm[p2] (El0,0) (210,0) (mxl0,0)' (my10,0)' 
6.5 p'2mm p2mm[p2mm] (El0, 0) (210, 0) (m~10, 0) (my10, 0) 
6.6 p'2m'm' p2mm[p22mg] (EI0,0)(210,0)(mxl0,0)' (myl0,0)' 
7.2 p2'm'g p2mg[pl lg] (El0, 0) (210, 0)' ~ ' (mxl~, 0) (m,l~, 0) 
7.3p2'mg' p2mg[plml] (el0,0) (210,0)' (m~l~,0) (turin,0)' ' 
7.4p2m'g' p2mg[p2] (El0,0) (210,0) (m~l~,0)' (myl~,0) 

are three subgroups of index 2 of G = p2, i.e. pl ,  p22 
and p22(½,0). Consequently, GI '  =p21 '  has three 
additional maximal subgroups p2[p 1] = p2', p2[p22 ] = 
p'2 and p2[p22 (-1 0)] = p'2 (½ 0). These are the seven 2' 
maximal subgroups of GI '  = p21' listed in Table 3. 

Maximal subgroups of G[I-1] = p2[p22 ] - p '2:  
H =p22 is a maximal subgroup of index 2. The 
maximal subgroups of G ~ H listed in Table 3 are 
S6 = p l  andp22 (½,0). The only subgroup of index 2 of 
Sa that is contained in H is K = p21. Consequently, 
S6[K ] = pl[p21 ] - p ' l  and p22 (! 0)[p21 ] = p22, ( ! ,  0) 2' 2 
are maximal subgroups of p '2.  We have not found as 
yet the type IIc maximal subgroups of lowest index. 
This is because we have considered only the maximal 
subgroups of G = p2 listed in Table 3 where only the 
type IIc maximal subgroups of lowest index are given. 
The next-lowest type IIc maximal subgroups of G = p2 
are the index 3 subgroups p32, p32 (1,0) and p32 (2, 0). 
Each of these contain two subgroups of index 2, e.g. for 
S G = p32 the two subgroups are P31 and p62, only the 
latter of which is a subgroup of H = p22. Consequently, 
SG[K ] = p32[P62] _= p~2 is a maximal subgroup. There 
are then three type IIc maximal subgroups of lowest 
index of G[I-I] = p2[p22 ] = p'2, the three groups p~2, 
p[2 (1, 0) and p[2 (2, 0). 

This work was supported by the National Science 
Foundation under grant DMR-9510335. 

the magnetic frieze-group symbol. The remainder of the 
table consists of three columns containing, respectively, 
all type I maximal subgroups, all type IIb maximal 
sub-groups and all type IIc maximal subgroups of 
lowest index. For magnetic frieze groups, there are no 
maximal subgroups of type Ha. 

Maximal subgroups of the group G = p2: this group 
has a single type I equi-translational maximal subgroup, 
the subgroup of index 2, p l. There are two type IIc 
isotypic of index 2 maximal subgroups both belonging 
to the same magnetic frieze-group type p2. These two 
groups have translational subgroups P2 = ((El2, 0)) and 
sets of coset representatives (El0,0) (210,0), and 
(Et0, 0) (211, 0), respectively. The first is the subgroup 
p22, see Table 1. The second is not an identical 
subgroup and a symbol must be introduced to 
distinguish this subgroup from the first. On moving 
the origin of the coordinate system in which the group 
G = p2 is defined to (½,0), this second group is defined 
by the translational subgroup P2 and the coset 
representatives (El0, 0) (210, 0). Consequently, we 
denote this second subgroup as p22 (½,, 0). 

Maximal subgroups of the group G1 = p21': G = p2 
is a type I maximal subgroup of index 2. There are three 
maximal subgroups of G = p2, i.e. p l ,  p22 and p22 
(½,0). Consequently, GI '  =p21 '  has three additional 
maximal subgroups p l l ' ,  p221' and p221 ' (½,0). There 

APPENDIX A 
Proof of procedure 

(A1) To find the maximal subgroups of Gl'. There are 
three forms of subgroups of GI':  (a) P where P _ G; 
(b) PI '  where P C G; (c) P[H] where P c G. 

(Ala) P = G is a subgroup of index 2 of GI '  and 
therefore a maximal subgroup of GI' .  If P c G, then P 
is not a maximal subgroup of GI '  since it is a subgroup 
of the maximal subgroup G. 

(Alb) PI '  = S61', where S a is a maximal subgroup 
of G, as it contains the element 1', is not a subgroup of 
subgroups of the form P or P[H]. It is not a subgroup of 
some other group PI '  as that would imply that S6 is not 
a maximal subgroup of G. Consequently, SGI' is a 
maximal subgroup. Any subgroup PI '  where P C Sa is 
not maximal since PI '  c S61'. 

(Alc) If P C G then P[H] c PI ' ,  and only if P = G 
can P[H] be a maximal subgroup. Every G[H] is a 
subgroup of index 2 of GI '  and consequently every 
G[I-I] is a maximal subgroup. 

(A2) To find maximal subgroups of G[H]. There are 
two forms of subgroups of G[I-I]: (a) P where P ___ H, 
(b) P[K] where P C G, P ~ H and K C H. 

(A2a) P = H is a subgroup of index 2 and therefore 
maximal. Any subgroup P c H is then not a maximal 
subgroup of G[H]. 
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Table 3. Maximal subgroups of the magnetic frieze 
groups 

Type I Type lib Type Ilc 

1.0pl 

1.1 p l l '  
[2] pl 

1.2 p ' l  -- pl[p21 ] 

2.0 p2 
[21 p 1 

[21 p ' l  

[2] P21 

2.1 p21' 
[2] p2 
[21 p l l '  
[2] p2' 

2.2 p2' -- p2[pl] 
[21 p 1 

[2] p '2 
[21 p'2 (½,0) 

2.3 p '2 - p2[p22 ] 
[2] p '1 [2] p22 

[2] p22' (½,0) 

3.0 plml 
[21 pl 

3.1 p lml l '  
[2] plml 
[21 p l 1' 
[2] plm' l  

3.2 p lm ' l  _=plml[pl] 
[21 pl 

[2] P21 

[2] P211' 

[3] p[ 1 

[2] p22 
[2] P22 (I ,  0) 

[2] P221' 
[2l P221' (½,0) 

[2] p22' 
[21 p22' (I, 0) 

[3] p[2 
[3] p~2 (1, 0) 
[3] p~2 (2, 0) 

[2] P21ml 
[2] P21ml (! 0) 2, 

[2] p ' lml  [2] P2 lml 1' 
[21 p ' lml  (½,0) [2] P21mll ' (1,0) 

[2] P2 lm' 1 
[2] p21m'l (½, O) 

3.3 p ' lml  -- plml[P21ml ] 
[2] p 'l [2] P2 lml [3] p[ lml 

[2] p21m'l ( t ,  O) [3] p'31ml (1,O) 
[3] p[ lm 1 (2, O) 

4 .0pl lm 
[2] pl [2] P21 lg [2] P21 lm 

4.1 pl lml' 
[2] pl lm [2] P21 lgl '  [2] P211ml' 
[2] p l l '  [2] p ' l l m '  
[2] pl lm' [2] p ' l  lm 

4.2 p l lm '  ------ pl lm[pl] 
[2] pl [21 p21 lg '  [21 p211m ' 

4.3 p ' l  lm -- pl  lm[p 21 lm] 
[2] p '1 [2] P21 lm [3] p~ 1 lm 

[21 p21 lg'  
4.4 p ' l l m '  =--pllm[p211g] 

[2] p '1 [2] P21 lg [3] p~ 1 lm' 
[2] P2 l lm'  

[3] P31 lg 

[3] P31 lg 1' 

5.0 pl lg 
[2] pl 

5.1 p l lg l '  
[21 pl lg 
[2l p I l' 
[2] pl lg' 

5.2 pl lg '  ---- pl  Ig[pl] 
[2] pl 

6.0 p2mm 
[21 p2 
12] plml  
[2] pl lm 

6.1 p2mml' 
[21 p2mm 
[2]/21' 
[2] plml l' 

[3] p311g ' 

[2] p22mg [2] p22mm 
[2] P22mg (I ,  o) [2] p22mm (I, 0) 

[2] p '2m'm' [21 p22mml' 
[2]p '2m'm' (½,0) [2]p22mml' ( t ,0 )  
[2] p'2mm 

Table 3 (cont.) 
Type I Type IIb Type Hc 

[2] pl lml' [2] p'2mm (½,0) 
[2] p2m 'm' [2] p22mgl ' 
[2] p2'mm' [2] p22mgl' (I,  O) 
[2] p2'm'm 

6.2 p2'mm' _ p2mm[plml] 
[2] plml [2] P22'mg ' [2] p22'mm' 
[2] p2' [2] p22'mg ' (½,0) [2] P22'mm' (!2,0) 
[2] pl lm '  

6.3 p2'm 'm -- p2mm[pl lm] 
[2] pl lm [2] p22'm 'g [2] p22'm 'm 
[2] plm' l  [2] P22'm'g (½, O) [2] p22'm'm (½, O) 
[2] p2' 

6.4 p2m 'm' -- p2mm[p2] 
[2] p2 [2] P22m ' g' [2] P22m 'm' 
[2] plm' l  [2] P22m'g ' (I ,  0) [2] P22m'm' (I,  O) 
[2] pl lm' 

6.5 p '2ram _---- p2mm[p22mm ] 
[2] p '2 [2] p22mm [3] p[2mm 
[2] p ' lml  [2] p22m'g ' [3] p~2mm (1,0) 
[2] p ' l  lm [2] P22'mg ' (~ 0) [3] p[2mm (2, 0) 

[2] P22'm'm (½' O) 
6.6 p '2m 'm ' =_ p2mm[PE2mg ] 

[2] p '2 [2] p22mg [3] p'32m 'm' 
[2]p ' lml (½,0) [2]p22'm'g (½,0) [3]p'32m'm' (1,0) 
[2] p ' l l m '  [2] p22m'm ' [3] P'32m'm' (2, 0) 

[2] P22'mm' (½,0) 
7.0 p2mg 

[2] p2 [3] p32mg 
[2] plml (~, 0) [3] p32mg (1, 0) 
[2] pl lg [3] P32mg (2, 0) 

7.1 p2mg 1' 
[2] p2mg [3] p32mgl' 
[2] p21' [3] P32mgl ' (1, 0) 
[2]plmll '  (~,0) [3]P32mgl' (2,0) 
[2] pl lgl '  
[2] p2m'g' 
[2] p2'mg' 
[2] p2'm 'g 

7.2 p2'm ' g ---- p2mg[pl lg] 
[2] pl lg [3] P32'm'g 
[2] p2' [3] p32'm'g (1, 0) 
[2] plm' l  (41,0) [31P32'm'g (2,0) 

7.3 p2'mg' -- p2mg[plml] 
[2] plml (~, 0) [3] p32'mg' 
[2] p2' [3] p32'mg' (1, 0) 
[2] pl lg '  [3] p32'mg' (2, 0) 

7.4 p2m ' g' -- p2mg[p2] 
[2] p2 [3] p32m 'g' 
[2] plm' l  (41,0) [3] p32m'g ' (1,O) 
[2] p l l g '  [3] p32m'g' (2, O) 

(A2b) If P = S a ~ H  then So[K] is a maximal 
subgroup. If not, this would imply the existance of a 
subgroup P[Q] such that So[K] c P[Q] c G[H], where 
So C P c G, which contradicts the assumption that 
S o is a maximal subgroup of G. If P c S o then P[K] is 
not a maximal subgroup of G[H]. If P c S o then we 
can show that there exists a subgroup So[Q] of G[H] 
such that P[K] C So[Q] c G[H]. We can write 
P[K] = K + g ' K  where g ~ G - H  and P = K + g K .  
We can also write G [ H ] - - H  + g'H with the same 
element g ~ G - H and G = H + gH. Since P C So, 
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Sa - P + a2P + . . . .  + aNP 

and 

S 6 = (K + gK) + a2(K + gK) + . . . .  + aN(K + gK), 

where each element a i - h i E H or a i -- gh i E gH. 
Since G = H + g H ,  if a i = h i then hi(K + gK) = 
hiK + higK, where h i K e  H and higK ~ gH, and if 
a i = gh i then ghi(K + gK) = ghiK + ghigK, where 
ghiK ~ gH and ghigK ~ H. Consequently, half  the 
elements of Sc are in H and half are in G - H = gH. 
This subset Q of elements in S 6 which are in H 
constitutes a subgroup Q of index 2 of S6: (i) since the 
elements of the group K are contained in Q, Q contains 
an identity; (ii) since Sc is a group, hihj e S6. Since H 
is a group, hih j E a .  Therefore, hih j ~ Q; (iii) each 
element h of Q has an inverse s a in S 6, hs a = e, where 
the identity e is contained in Q. s G = h j e H  or 
s a = ghj ~ gH. The latter case is not possible since 
hghy ~ gH, which does not contain the identity element. 
We have then that the inverse of every element in the set 
Q is also in this set. Consequently, the elements of 

the set Q constitute a subgroup of Q index 2 of Sa. 
Finally, S6[Q ] is a subgroup of G[H] such that 
P[K] c So[Q] c G[H]. 
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