Ferroelectrics 252 79-87 (2001)

DOMAIN PAIR SYMMETRY REDUCTION DUE TO DISORIENTATIONSⁱ

D.B. LITVIN*, V. JANOVEC**, & J. PŘÍVRATSKÁ**

*Department of Physics, The Pennsylvania State University, Penn State Berks Campus, P.O. Box 7009, Reading PA 19610-6009, USA. E-mail: u3c@psu.edu

**Technical University of Liberec, Halková 6. 461 17 Liberec 1, Czech Republic. E-mail: janovec@fzu.cz

We tabulate how the symmetry characteristics of ferroelastic domain pairs are influenced by disorientations, i.e. rotations of single domain states needed to achieve a coherent interface of two ferroelastic domain states along a planar wall.

Keywords: domain pair, symmetry, disorientations

INTRODUCTION

In predicting the tensor distinction of two domain states by group theoretical means the concept of the *symmetry group of a domain pair* has been introduced 1 : Let S_i denote a single domain state, i.e. a bulk of one single domain; single domain states have the same structure, differ only in their spatial orientations and are related by symmetry operations of the parent symmetry group. Two domain states S_1 and S_2 , considered irrespective of their coexistence, form a *domain pair* $\{S_1, S_2\}$. Group theoretically, the domain states of a domain pair are specified by the symmetry group F_1 of S_1 , the subgroup of all symmetry operations of the parent symmetry group which leaves the first domain state S_1 invariant and a switching operation g_{12} that

¹ This material is based on work supported by the National Science Foundation grant DMR-9722799, by the Grant Agency of the Czech Rep., grant 202/00/1245 and the Ministry of Education of the Czech Rep., project CEZ:J11/98:242200002, VS 96006, and ME336(1999).

transforms S_1 into the second domain state S_2 , i.e. $g_{12}S_1 = S_2$. The symmetry group $\mathbf{F_2}$ of the second domain state is given by $\mathbf{F_2} = g_{12} \, \mathbf{F_1}$ g_{12}^{-1} . Let $\mathbf{F_{12}} = \mathbf{F_1} \cap \mathbf{F_2}$ denote the group of all symmetry elements which leave both domain states S_1 and S_2 invariant and let j_{12}^* denote a symmetry operation, if one exists, that interexchanges the two domain states, i.e. $j_{12}^*S_1 = S_2$ and $j_{12}^*S_2 = S_1$. The symmetry group of a domain pair $\{S_1, S_2\}$ is given by $\mathbf{J_{12}} = \mathbf{F_{12}} + j_{12}^*\mathbf{F_{12}}$. If there exists an element j_{12}^* then the domain pair $\{S_1, S_2\}$ is referred to as a *transposable* domain pair. If in addition $\mathbf{F_1} = \mathbf{F_2}$, it is referred to as a *completely transposable* domain pair. If no such element exists, then it is referred to as a *non-transposable* domain pair.

For non-ferroelastic domain pairs, the mutual orientations of the domain states in a polydomain are not influenced by conditions of coexistence. The domain states in a polydomain sample are identical with single domain states. All possible non-ferroelastic domain pairs are completely transposable ^{2,3}. For ferroelastic domain pairs, the mutual orientations of the domain states in a polydomain sample are influenced by conditions of coexistence and their orientation is not identical with that of single domain states. It has been shown ⁴⁻⁶, that for a ferroelastic domain pair there may exist two mutually perpendicular planes, called permissible walls, along which two domain states can meet in a compatible manner, i.e. without dislocations or other singular defects. To achieve such a compatible interface the two single domain states must be rotated by a disorientation angle $\phi/2$ and $-\phi/2$, respectively, about the intersection of the permissible domain walls called an axis of the ferroelastic domain pair axis. The rotated domain states are called disoriented and a domain pair consisting of two disoriented domain states with a common permissible wall, a *compatible domain pair*.

DOMAIN PAIR SYMMETRY REDUCTION DUE TO DISORIENTATIONS

The symmetry characteristics of ferroelastic compatible domain pairs change due to the disorientation rotation of the constituent domain states necessary for a compatible interface. In Table 1 we list these symmetry characteristics of the domain states and of the domain pair prior and subsequent to the disorientation rotation. We consider all classes of compatible domain pairs ⁷. This includes the cases of completely transposable ferroelastic compatible domain pairs ⁸.

D. B. LITVIN et al

For each class of ferroelastic compatible domain pairs two lines of symmetry characteristics are given, the first for prior to and the second for subsequent to the disorientation rotation. Prior to the disorientation rotation (first line):

- $\mathbf{F_1}$ The symmetry group of the first domain state $\mathbf{S_1}$.
- g_{12} The switching operation, $g_{12} S_1 = S_2$. If available, two choices are given.
- $\mathbf{K_{12}}$ The twinning group, the group $<\mathbf{F_1}$, $\mathbf{g_{12}}>$ generated by the symmetry group $\mathbf{F_1}$ of the first domain state $\mathbf{S_1}$ and the switching operation $\mathbf{g_{12}}$.
- $\mathbf{F_2}$ The symmetry group of the second domain state \mathbf{S}_2 .
- ${\bf F}_{12}$ The symmetry group common to both domain states, i.e. the intersection ${\bf F}_1 \cap {\bf F}_2$ of the symmetry groups of the two domain states.
- j_{12} * The twinning operation, an operation that switches the two domain states, j_{12} *S $_1$ = S $_2$ and j_{12} *S $_2$ = S $_1$. If none exist an entry "none" is given. The "*" denotes an operation which switches the domain states.
- \mathbf{J}_{12} The symmetry group of the domain pair, the group $\mathbf{F}_{12} + \mathbf{j}_{12}^* \mathbf{F}_{12}$

axis The direction of the axis of the disorientation rotation. Subsequent to the disorientation rotation (second line): The superscript "+ -" denotes that the symmetry characteristic is that of the domain state or states after the disorientation rotation.

The domain pair will consist of either S_1^+ and S_2^- or S_1^- and S_2^+ as the pair of domain states S_1 and S_2 must be rotated in opposite directions to meet at a compatible domain wall.

 g_{12}^{+} The switching operation, g_{12}^{+} $S_{1}^{+} = S_{2}^{-}$ (and g_{12}^{+} $S_{1}^{-} = S_{2}^{+}$). If

available, two choices are given, if none exist an entry "none" is given.

 \mathbf{K}_{12}^{+-} The twinning group, the group $\langle \mathbf{F}_{1}^{+-}, \mathbf{g}_{12}^{+-} \rangle$.

 $\mathbf{F_2}^+$ The symmetry group of the second domain state $\mathbf{S_2}^+$ (and $\mathbf{S_2}^+$).

 $\mathbf{F_{12}}^{+-}$ The symmetry group common to both domain states $\mathbf{S_1}^{+}$ and $\mathbf{S_2}^{-}$ (and to both the domain states $\mathbf{S_1}^{-}$ and $\mathbf{S_2}^{+}$).

 j_{12}^{*+-} The twinning operation $j_{12}^{*+-}S_1^{-+} = S_2^{--}$ and $j_{12}^{*+-}S_2^{--} = S_1^{+-}$ ($j_{12}^{*+-}S_1^{--} = S_2^{+-}$ and $j_{12}^{*+-}S_2^{+-} = S_1^{--}$). If none exist an entry "none" is given

As an example consider the following derivation of a ferroelastic domain twin from two single domain states. In the Figure 1, the parent phase is represented by a dashed square. The two single domain states S_1 and S_2 are shown as solid rectangles. A double-dashed line "== " denotes one of the two perpendicular compatible domain walls, both perpendicular to the plane of the paper, and the disorientation angle Φ is also shown.

In Figure 2, we show the two single domain states after the disorientation. Domain state S_1 has been rotated $-\varphi/2$ into the domain state S_1^- and S_2 into S_2^+ . Assuming that prior to the disorientation, $F_1 = \mathbf{2_x 2_y 2_z}$ and $g_{12} = \mathbf{2_{xy}}$, one has $\mathbf{K_{12}} = \mathbf{4_z 2_x 2_{xy}}$, and the domain pair symmetry group $\mathbf{J_{12}} = \mathbf{4_z^* 2_x 2_{xy}}$. From Table 1, we then have that after the disorientation, we find the reduction in symmetries

S₁

to be $\mathbf{F_1}^+ = \mathbf{2_z}$, $\mathbf{g_{12}}^+ = \mathbf{2_{xy}}$, and $\mathbf{J_{12}}^+ = \mathbf{2_{xy}} \cdot \mathbf{2_{xy}} \cdot \mathbf{2_z}$.

D.B. LITVIN et al

References

- 1) V. Janovec, Czech. J. Phys. **B22** 974 (1972).
- 2) V. Janovec, L. Richterova, and D.B. Litvin, *Ferroelectrics*, **126** 287 (1992).
- 3) V. Janovec, L. Richterova, and D.B. Litvin, *Ferroelectrics*, **140** 95 (1993).
- 4) J. Fousek and V. Janovec, J. Appl. Phys., 40 135 (1969).
- 5) J. Sapriel, *Phys. Rev.*, **B12** 5128 (1975).
- 6) E.F. Dudnik and L.A. Shuvalov, Ferroelectrics, 98 207 (1989).
- 7) D.B. Litvin and V. Janovec, Ferroelectrics, 222 87 (1999).
- 8) V. Janovec, D.B. Litvin, and L. Richterova, *Ferroelectrics*, **157** 75 (1994).

Table 1: Domain Pair Symmetry Reduction

F ₁ F ₁ ⁺⁻	g_{12} g_{12}	K ₁₂ K ₁₂ +-	F ₂ F ₂ +-	F ₁₂ F ₁₂ +-	j ₁₂ * j ₁₂ *+-	J ₁₂ J ₁₂ +-	axis
1	2 _z	2 _z	1	1	2 _z * 2 _z * m _z *	2 _z *	 [kh0]
1	2 _z	2_{z}	1	1	2_z^*	2 _z *	
1	m_z	m_z	1	1	m_z^*	m_z^*	[k h 0]
1	m_z	m_z	1	1	m_z^*	m_z^*	
1	2_z , m_x		$\frac{1}{\frac{1}{1}}$	$\frac{1}{1}$	2.*	$2_z^*/m_z^*$	$[k\overline{h}0]$
$\frac{1}{1}$	2_z , m_x	$2_z/m_z$	<u>1</u>		2_z^*	$2_{z}^{*}/m_{z}^{*}$	
2 _z	2_x , 2_v	$2_x 2_y 2_z$	2 _z	2 _z	2 _x *	$2_{x}^{*}2_{y}^{*}2_{z}$	[001]
2 _z 2 _z	2_{x} , 2_{v}	$2_x 2_y 2_z$	2 _z	2 _z	2 _x * 2 _x * 2 _x *	$2_{x}^{*}2_{y}^{'}*2_{z}$	
2 _z 2 _z	m_x , m_v	$m_x m_y^2 2_z$	2_{z}	2 _z	m_x	m _x *m _y *2	2 _z [001]
2 _z	m_x , m_v	$m_x m_v 2_z$	2 _z	2 _z	m_v	m _x *m _v *2	2_z
2 _z 2 _z	$4_{z}^{''}, 4_{z}^{3'}$	4 _z	2 _z	2 _z	4 _z	4 _z *	[001]
2 _z	none	2 _z	2 _z	2 _z	none	2 _z	
2 _z 2 _z	$\overline{4}_{7}, \overline{4}_{7}^{3}$	$\overline{4}$,	2 _z	2 _z	$\overline{4}_{z}$	$\frac{2_z}{4_z}$	[001]
2 _z	none	2 _z	2 _z	2 _z	none	2_{z}	
2 _x 1	2_{xy} , 4_z	$4_z 2_x 2_{xy}$ $\underline{2_{xy}}$	2 _y	1	2 _{xy}	2,*	[T l2h]
1	2 _{xy} _	2 _{xv}	1	1	2 _{xy}	2 _{xy} * m _{xv} *	
2 _x	m_{xy} , 4_{z}	, 4 _z 2 _x m _x ,	, 2 _y	1	m _{xv}		[Tl2h]
1	m_{xy}	\mathbf{m}_{xv}	1	1	m_{xy}	m _{xy} *	
2 _x	$2_{x'}, 3_{z}^{2}$	3_2	2 _{x"}	1	2 _{x'} *	2 _{x'} *	[l 0 l 2h]
1	2 _{x'}	2 _{x'}	1	1	2 _{x'} *	2 _{x'} *	
2 _x	$m_{x'}$, 3_z	5 3 $_{z}$ m $_{x}$	2 _{x"}	1	$m_{x'}^*$	m _{x'} *	[l 0 l 2h]
1	$m_{x'}$	$m_{x'}$	1	1	m _{x'} *	m _{x'} *	
2 _z	3_z^2 , 6_z	6 _z	2 _z	2 _z	none	2 _z	[0001]

2 _z	none	2 _z	2 _z	2 _z	none	2 _z	
2 _z	$\overline{3}_z^2$, $\overline{6}_z$	$6_z/m_z$	2 _z	2 _z	none	2 _z	[0001]
$\hat{2}_{z}$	none	2 _z	2 _z	2 _z	none	2 _z	-
2 _x	$2_{y'}$, 6_z	$6_z^2_x^2_y$		1	2 _{v'} *	2 _y .*	[l 2 l l2h]
î	2 _{y'}	2 _{y'}	1	1	2 _{y'} *	2 _y .*	-
2 _x	$m_{y'}$, $\overline{6}_z$	$\frac{1}{6}$ _z 2 _x m _y	2,"	1	m _{y'} *	m _y .*	[l 2 l 2h]
î	$m_{y'}$	m _{y'}	1	1	m _{y'} *	m _y .*	
m_z	2, m,	m _x ^y 2 _y m _z	m.	m_z	2,*	m _x *2 _y *n	n_ [001]
\dot{m}_z	2 m.	$m_x^2 2_y^2 m_z^2$	m_	m _z	2_y^y *	m _x *2 _y *n	1_
m _z ²	4_z^y , $\overline{4}_z^3$	$4_z m_z^2$	m _z	m _z	none	m _z y	[001]
\dot{m}_z	none	m.	m _z	m _z	none	m _z	
m _x		4 _z m _x m _{xy}		1		m*	[Tl2h]
1	m _{xy}		1	1	m _{xy} * m _{xy} *	m _{xy} * m _{xy} *	[· · · · · · · · · · · · · · · · · · ·
m _x	2 4	$\frac{m_{xy}}{4}_{z}m_{x}2_{xy}$		1	2 _{xy} * 2 _{xy} *	2 *	[Tl2h]
1	2_{xy}	2 _{xy}	1	1	-xy 2 *	2 _{xy} * 2 _{xy} *	[]
m _x	$m_{x'}^{xy}$, 3_z^2	3 _z m _x	=	1	2 _{xy} * m _{x'} *	m _{x'} *	[l 0 l 2 h]
1	$m_{x'}$, σ_z		1	1	m _{x'} *	m _{x'} *	[. 0 . 2]
m _x	$2_{x'}^{x}$, 3_{z}^{2}	$\frac{m_x}{3}$ _z m _x	m _{x"}	1	2 _{x'} *	2 _{x'} *	[l 0 l 2 h]
1	$2_{x'}$, $0_{z'}$		1	1	2 _{x'} *	2 _{x'} *	[. 0 . 2]
m _z	$\overline{3}_{z}^{x}$, $\overline{6}_{z}^{5}$	$\frac{-x}{6}$	m _z	m _z	none	m _z	[0001]
m _z	none		m _z	m _z	none	m _z	[000.]
m _z	$\overline{3}_z^2$, 6_z	6_/m_	m _z	m _z	none	m _z	[0001]
m _z	none	m_	m _z	m _z	none	m _z	[]
m _x 2		6 _z m _x m _y		1	m _{y'} *	m _{y'} *	[l 2 l l2h]
î	m _{y'} _		1	1	m _{y'} *	m _y .*	
m_x	$2_{v'}^{y}, \overline{6}_{7}$	$\overline{6}_{z}^{\prime}m_{x}2_{y}$	m _{v"}	1	2 _{y'} *	2 _{y'} *	[l 2 l l2h]
î	2 _{y'} 2	2 _{y'} , ,	1	1	2 _{y'} *	2 _y .*	
$2_z/m_z$	m, m,	m _x m _y m _z	2,/m,	$2_z/m_z$	m _x *	m,*m,*ı	m _z [001]
$\frac{2}{2_z}$ / m_z	m_{v}^{2} , m_{v}^{3}	m _x m _y m _z	2,/m,	$2_z^2/m_z^2$	m _x *	m _x *m _y *ı	m,
$2_z/m_z$	$4_{z}^{1}, 4_{z}^{3}$	$4_z \hat{l} m_z^{\prime}$	2,/m,	$2_z^2/m_z^2$	4 _z *	$4_z^*/m_z^y$	[001]
$\frac{2}{2_z}$ / m_z	none	$2_z^2/m_z^2$	2 _z /m _z	$2_z^2/m_z^2$	none	$2_z^2/m_z^2$	
2 _x /m _x		$4_z/m_z m_x$			2 _{xy} *	2, */m,	* [Tl2h]
<u>1</u> ^	2,, m,	2, /m,	1,	1	2 ^{xy} *	$2_{xy}^{y}*/m_{xy}^{y}$	*
$2_x/m_x$	\hat{m}_{x}^{2} , 3_{z}^{2}	$\frac{2_{xy}}{3_z}m_x$	2,:/m,:	<u>1</u>	2 _{x'} *	2,*/m,*	[I 0 I 2h]
<u>1</u> ^	2, m	2 _{x'} /m _{x'}	<u>1</u> ^	<u>1</u>	2 _{x'} *	2 _{x'} */m _{x'} *	
$2_z/m_z$	$3^{\hat{3}}_{7}, 6^{\hat{3}}_{7}$	$\hat{6}_z/\hat{m_z}$	2,/m,	$2_z/m_z$	none	2,/m, ^	[0001]
$\frac{1}{2}$ /m _z	none	2,/m,	2_/m_	$2_z^2/m_z^2$	none	$2_z^2/m_z^2$	
2 <u>x/m</u> x	m,, 6,	6 _z /m _z m _x n			m _{y'} *		[l 2 l l2h]
<u>1</u> ^	$2_{v'}$, $m_{v'}$	2 _{y'} /m _{y'}	1 ^	<u>1</u>	m _{y'} *	2 _v .*/m _v .*	
	у, у	1 · y			у	y · y	
2 _x 2 _y 2 _z	2 _{xv} , 2 _{x̄v}	$4_z 2_x 2_{xy}$	2 _x 2 _y 2 _z	2 _x 2 _v 2 _z	2 _{xy} *	4 _z *2 _x 2 _{xy}	* [001]
$\mathbf{\hat{2}}_{z}$		$2_{xy}2_{\bar{x}y}2_{z}$	2 _z ' -	2 _z	2 _{xy} *	$2_{xy}^{*}2_{\bar{x}y}^{*}$	$2_{\mathbf{z}}$
$2_x 2_y 2_z$	m_{xy} , $m_{\bar{y}}$	$_{xy}$ $\frac{1}{4}$ $_{z}$ $\frac{1}{2}$ $_{x}$ $\frac{1}{2}$ $$	$2_x^2 2_y 2_z$	$2_x^2 2_y 2_z$	\hat{m}_{xy}	$\frac{1}{4}$ *2 m	_{ky} * [001]
2,	m_{xy} , $m_{\bar{y}}$	_{''} m _{''} m _{''} 2 _'	2,	2,	m _{xy}	$m_{xy}^{-} m_{\bar{x}y}$	*2 _z
$2_{x}2_{y}2_{z}$	2 _{v'} , 2 _{x'}	$6_z 2_x^2 2_y$	2 _{x"} 2 _{y"} 2 _z	2 _z	2 _{v'} *	2 _{x'} *2 _{y'} *2	_z [0001]

```
\mathbf{2}_{v'} \text{ , } \mathbf{2}_{x'} \quad \mathbf{2}_{x'} \mathbf{2}_{y'} \mathbf{2}_{z} \quad \mathbf{2}_{z}
                                                                                                                                {2_{y'}}^*\\ {m_{y'}}^*
                                                                                                                                                          2_{x'}^{*}2_{y'}^{*}2_{z}
                    m_{y'}, m_{x'} 6<sub>z</sub>/m_{z}m_{x}m_{y} 2<sub>x"</sub>2<sub>y"</sub>2<sub>z</sub> 2<sub>z</sub>
                                                                                                                                                          m_{x}*m_{y}*2_{z} [0001]
 m<sub>v'</sub>
                                                                                                                                                          m_{x'}^*m_{y'}^*2_z
                                                                                                                                                          2<sub>xz</sub>*
                                                                                                                                 2<sub>xz</sub>*
                                                                                                                                                                                    [l2h l]
                         2<sub>xz</sub> ____
                                                                                                                                                          2<sub>xz</sub>
                                                                             1
                                                                                                                                                          m<sub>xz</sub>*
\mathbf{2}_{xy}\mathbf{2}_{\bar{x}y}\mathbf{2}_{z} \mathbf{m}_{xz}, \overline{\mathbf{4}}_{y} \mathbf{m}_{z}\overline{\mathbf{3}}_{p}\mathbf{m}_{xy} \mathbf{2}_{x}\mathbf{2}_{yz}\mathbf{2}_{\overline{y}z}
                                                                                                                                m<sub>xz</sub>
                                                                                                                                                                                   [l2h l ]
                         \boldsymbol{m}_{xz}
                                                                            1
                                                                                                                                m<sub>xz</sub>
                                                                                                                                                          m<sub>xz</sub>
                                              m<sub>xz</sub>
                                                                                                                               m<sub>xy</sub>
 \mathbf{m}_{x}\mathbf{m}_{y}\mathbf{2}_{z} \mathbf{m}_{xy}, \mathbf{m}_{\bar{x}y}\mathbf{4}_{z}\mathbf{m}_{x}\mathbf{m}_{xy} \mathbf{m}_{x}\mathbf{m}_{y}\mathbf{2}_{z} \mathbf{m}_{x}\mathbf{m}_{y}\mathbf{2}_{z}
                                                                                                                                                          4_z * m_x m_{xy} * [001]
                                                                                                      \mathbf{2}_{\mathbf{z}}
                                                                                                                                m<sub>xy</sub>
                          m_{xy} , m_{\bar{x}y} \underline{m_{xy}} m_{\bar{x}y} \hat{\mathbf{2}}_{z} \hat{\mathbf{2}}_{z}
                                                                                                                                                          m_{xy}^* m_{\bar{x}y}^* 2_z
m_{xy}m_{\bar{x}y}2_z 2_x^{"}, 2_y \overline{4_z}2_x^{"}m_{xy} m_{xy}m_{\bar{x}y}2_z m_{xy}m_{\bar{x}y}2_z
                                                                                                                                                          \overline{4}_{z}^{*}2_{x}^{*}\dot{m}_{xy}^{*} [001]
                                                                                                                                  2,
                          2_x, 2_y 2_x 2_y 2_z 2_z 2_z
                                                                                                                                                          2_{x}^{2}_{y}^{2}_{z}
                                                                                                                                                          2_{xy}^{*}\dot{m}_{\bar{x}y}^{\bar{x}}m_{z} [001]
 \mathbf{2}_{x}\mathbf{m}_{y}\mathbf{m}_{z} \mathbf{2}_{xy}, \mathbf{m}_{\bar{x}y} \mathbf{4}_{z}/\mathbf{m}_{z}\mathbf{m}_{x}\mathbf{m}_{xy} \mathbf{m}_{x}\mathbf{2}_{y}\mathbf{m}_{z} \mathbf{m}_{z}
                                                                                                                                2_{xy}
                                                                                                                                                          2_{xy}^{xy} m_{\bar{x}y} m_z
                          2_{xy}, m_{\bar{x}y} 2_{xy}m_{\bar{x}y}m_z m_z
                                                                                      m_z
 m_x m_y 2_z \quad m_{y'} , \ m_{x'} \ 6_z m_x m_y \quad m_{x''} m_{y''} 2_z \ 2_z
                                                                                                                                                          m_{x'}*m_{y'}*2_{z} [0001]
                                                                                                                                m_{v'}
                         \mathbf{m}_{\mathbf{y}'}, \mathbf{m}_{\mathbf{x}'} \mathbf{m}_{\mathbf{x}'} \mathbf{m}_{\mathbf{y}'} \mathbf{2}_{\mathbf{z}} \mathbf{2}_{\mathbf{z}}
                                                                                                                                m_{v'}^*
                                                                                                                                                          m_{x'}*m_{y'}*2_{z}
                                                                                                                                2<sub>y'</sub>*
2<sub>y'</sub>*
 m_x 2_y m_z 2_{y'}, m_{x'} 6_z m_x 2_y m_{x''} 2_{y''} m_z m_z
                                                                                                                                                          m_{x'}*2_{y'}*m_{z} [0001]
                          2_{v'}, m_{x'} m_{x'}2_{v'}m_{z} m_{z}
                                                                                                                                                          m_{x'}*2_{y'}*m_z
 2_x m_y m_z 2_{y'}, m_{x'} 6_z / m_z m_x m_y 2_{x''} m_{y''} m_z m_z
                                                                                                                                 m_{x'}^*
                                                                                                                                                          \mathbf{m}_{x'}^* \mathbf{2}_{y'}^* \mathbf{m}_{z} [0001]
                                                                                                                                                          \mathbf{m}_{x'}^{*}\mathbf{2}_{y'}^{*}\mathbf{m}_{z}
\mathbf{2}_{x'}^{*}\mathbf{2}_{y'}^{*}\mathbf{2}_{z} [0001]
                                                                                                                                m_{x'}^*
                          2_{y'}, m_{x'} m_{x'}2_{y'}m_z m_z
                                                                                          m_z
                                                                                                                                2<sub>y'</sub>*
2<sub>y'</sub>*
m_x m_y 2_z 2_{y'}, 2_{x'} 6_z / m_z m_x m_y m_{x''} m_{y''} 2_z 2_z
2_{x'}^{*}2_{y'}^{*}2_{z}
                                                                                                                                                          m<sub>xz</sub>
                                                                                                                                m_{xz}
                                                                                                                                                                                   [l2h l ]
                           \boldsymbol{m}_{xz}
                                                                                                                                m<sub>xz</sub>*
                                                  \mathbf{m}_{\mathbf{x}\mathbf{z}}
                                                                                                                                                          m<sub>xz</sub>
m_{xy}m_{\bar{x}y}2_z 2_{xz}, 4_y m_z \overline{3}_p m_{xy} 2_x m_{yz} m_{\bar{y}z} 1
                                                                                                                                                          2_{xz}^*
                                                                                                                                                                                    [12h]
                           2<sub>xz</sub> _
                                                                                                                                                          2<sub>xz</sub>*
2<sub>xz</sub>*
                                                   \mathbf{2}_{xz}
                                                              1 1 1
    1
                                                                                                                                 2_{xz}^*
2_{xy}m_{xy}m_z 2_{xz}^{xz}, \overline{4}_y m_z \overline{3}_p m_{xy} m_x m_{yz} 2_{\overline{y}z} 1

1 2_{xz} 2_{xz} 1 1
                                                                                                                                                                                   [l2h l]
                                                                                                                                                         2<sub>xz</sub>
 \mathbf{2}_{xy}\mathbf{m}_{\bar{x}y}\mathbf{m}_{z}\ \mathbf{m}_{xz} , \mathbf{4}_{y}\ \mathbf{m}_{z}\overline{\mathbf{3}}_{p}\mathbf{m}_{xy}\ \mathbf{m}_{x}\mathbf{m}_{\overline{y}z}\mathbf{2}_{yz} 1
                                                                                                                                                          m_{xz}^*
                                                                                                                                 m_{xz}
                                                                                                                                                                                    [l2h l ]
                                         m<sub>xz</sub> 1
    1
                                                                                                                                                          m<sub>xz</sub>
\mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{y}}\mathbf{m}_{\mathbf{z}} \ 2_{\bar{\mathbf{x}}\mathbf{y}} \ , \ \mathbf{m}_{\mathbf{x}\mathbf{y}} \ \mathbf{4}_{\mathbf{z}}/\mathbf{m}_{\mathbf{z}}\mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{x}\mathbf{y}} \ \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{y}}\mathbf{m}_{\mathbf{z}} \ \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{y}}\mathbf{m}_{\mathbf{z}} \ \mathbf{m}_{\mathbf{x}\mathbf{y}}^*
                                                                                                                                                          4_z*/m_zm_xm_{xy}*[001]
                          2_{\bar{x}y}, m_{xy} m_{xy} 2_{\bar{x}y} m_z m_z m_z
                                                                                                                                                          m_{xy}^* m_{\bar{x}y}^* m_z
m_x m_v m_z m_{v'}, m_{x'} 6_z / m_z m_x m_v m_{x''} m_{z''} m_z 2_z / m_z m_{v''}
                                                                                                                                                          m_{x'}*m_{y'}*m_{z} [0001]
    \mathbf{2}_{\mathbf{z}}/\mathbf{m}_{\mathbf{z}} \quad \mathbf{m}_{\mathbf{y}'} , \mathbf{m}_{\mathbf{x}'} \mathbf{m}_{\mathbf{x}'} \mathbf{m}_{\mathbf{y}'} \mathbf{m}_{\mathbf{z}} \quad \mathbf{2}_{\mathbf{z}}/\mathbf{m}_{\mathbf{z}} \quad \underline{\mathbf{2}}_{\mathbf{z}}/\mathbf{m}_{\mathbf{z}} \quad \mathbf{m}_{\mathbf{y}'}
                                                                                                                                                          m_{x'}*m_{y'}*m_z
                                                                                                                                m<sub>xz</sub>
m_{xy}m_{\bar{x}y}m_z m_{xz}, 4_y m_z 3_p m_{xy} m_x m_{yz} m_{\bar{y}z} 1
                                                                                                                                                          2_{xz}*/m_{xz}* [I2h I]
                         m_{xz}, 2_{xz} 2_{xz} m_{xz} \overline{1}
                                                                                                                                m<sub>xz</sub>
                                                                                                                                                          2_{xz}*/m_{xz}
    1
4<sub>z</sub>
                                                                                                                                2<sub>xz</sub>*
                                                                                                                                                          2<sub>xz</sub>*
2<sub>xz</sub>*
                          2_{xz}, 4_y 4_z3_p2_{xy}
                                                                                                                                                                                    [010]
                         2<sub>xz</sub> _
                                            2<sub>xz</sub>
                                                                                                                               2_{xz}
    1
                                                                                                       1
4<sub>z</sub>
                          m_{xz}, \overline{4}_y m_z \overline{3}_p m_{xy} 4_x
                                                                                                                                m_{xz}
                                                                                                                                                          m<sub>xz</sub>
                                                                                                       1
                                                                                                                                                                                    [010]
                          \mathbf{m}_{xz}
                                                   \mathbf{m}_{\mathbf{xz}}
                                                                                                                                m_{xz}
                                                                                                                                                          m_{xz}^*
                         m_{xz}, \overline{4}_y \overline{4}_z 3_p m_{xy} \overline{4}_x
 4,
                                                                                                       1
                                                                                                                                m_{xz}^*
                                                                                                                                                          m_{xz}^*
                                                                                                                                                                                    [010]
                                                                                                                                m<sub>xz</sub>,
                          \mathbf{m}_{xz}
                                                                                                                                                          m_{xz}^*
    1
                                                   m_{x\underline{z}}
                                                                                                       1
                                                                                                                                2<sub>xz</sub>*
2<sub>xz</sub>*
 4,
                                                                                                                                                          2_{xz}^*
                          2_{xz}, 4_{y}
                                                   m_z 3_p m_{xy} 4_x
                                                                                                       1
                                                                                                                                                                                    [010]
                                                   \mathbf{2}_{xz}
                                                                                                                                                          2_{xz}^*
   1
                          2_{xz}
 4_z/m_z
                          m_{xz}, 4_v m_z \overline{3}_p m_{xy} 4_x/m_x
                                                                                                                                                          2_{xz}*/m_{xz}*[010]
                                                                                                                                m_{xz}
```

```
2_{xz}, m_{xz} 2_{xz}/m_{xz}
                                                                                                                                        m_{xz}^* 2_{xz}^*
                                                                                                                                                                   2_{xz}*/m_{xz}*
                                                                                                                                                                   4_{v}^{2} 2_{x} 2_{xz}^{2} [010]
                            2_{xz}, 2_{\bar{x}z} 4_z3_p2_{xy}
                            2_{xz}, 2_{\bar{x}z} 2_{xz}2_{y}2_{\bar{x}z} 2_{y}
                                                                                                                                        2<sub>xz</sub>
                                                                                                                                                                   2_{xz}^{*}2_{y}2_{\bar{x}z}^{*}
                                                                                                             \mathbf{2}_{y}
                                                                                                             2_{x}^{'}2_{y}2_{z}
                                                                                                                                        m<sub>xz</sub>
                                                                                                                                                                    4_{y}^{*}2_{z}m_{xz}^{*}[010]
 4_z 2_x 2_{xy}
                           m_{xz}, m_{\bar{x}z} m_z 3_p m_{xy} 4_x 2_y 2_{yz}
                                                                                                             2<sub>y</sub>
                                                                                                                                        m<sub>xz</sub>
                                                                                                                                                                   m_{xz}^{\prime} * 2_{v} m_{\bar{x}z} *
                            m_{xz}, m_{\bar{x}z} m_{xz} 2_v m_{\bar{x}z} 2_v
  4_z m_x m_{xy} 2_{xz}, m_{\bar{x}z} m_z 3_p m_{xy} 4_x m_y m_{yz} m_y
                                                                                                                                        2_{xz}^*
                                                                                                                                                                   2_{xz}*m_vm_{\bar{x}z}*[010]
                                                                                                                                        2_{xz}
                            \mathbf{2}_{xz} , m_{\bar{x}z}~\mathbf{2}_{\underline{xz}}m_ym_{\bar{x}z}~\underline{m}_y
                                                                                                                                                                   2_{xz}*m_vm_{xz}*
  4_z 2_x m_{xy} m_{xz}, m_{xz} 4_z 3_p m_{xy} 4_x 2_z m_{yz} 2_x 2_y 2_z
                                                                                                                                        m_{xz}
                                                                                                                                                                    4_{v}^{*}2_{z}m_{xz}^{*}[010]
                                                                                                           2<sub>y</sub>
                                                                                                                                                                   m_{xz}^{'} * 2_{y} m_{\bar{x}z}
                            m_{xz}, m_{\bar{x}z} m_{xz} 2_y m_{\bar{x}z} 2_y
                                                                                                                                         m_{xz}
                                                                                                                                        m<sub>xz</sub>,
  \overline{\mathbf{4}}_{z}\mathbf{m}_{x}\mathbf{2}_{xy}\,\mathbf{2}_{\bar{x}z}, \mathbf{m}_{xz} \mathbf{m}_{z}\overline{\mathbf{3}}_{p}\mathbf{m}_{xy} \overline{\mathbf{4}}_{x}\mathbf{m}_{z}\mathbf{2}_{yz} \mathbf{m}_{y}
                                                                                                                                                                   m_{xz}^* m_v^2 2_{\bar{x}z}^* [010]
                                                                                                                                        m<sub>xz</sub>
                            2_{\bar{x}z} , m_{xz}\, \bm{m}_{xz} \underline{\bm{m}}_y \bm{2}_{\bar{x}z} \; \underline{\bm{m}}_y
                                                                                                              m_{v}
                                                                                                                                                                   m_{xz}^* m_v^2 2_{xz}^*
  \overline{\mathbf{4}}_{z}\mathbf{2}'_{x}\mathbf{m}_{xy} \ \mathbf{2}_{xz}, \mathbf{2}_{xz} \ \mathbf{m}_{z}\overline{\mathbf{3}}_{p}\mathbf{m}_{xy} \ \overline{\mathbf{4}}_{x}\mathbf{2}_{z}\mathbf{m}_{yz} \ \mathbf{2}_{x}\mathbf{2}_{y}\mathbf{2}_{z}
                                                                                                                                        2_{xz}^{*}
                                                                                                                                                                   \mathbf{4_{v}^{*}2_{x}2_{xz}^{*}}[010]
                                                                                                           2<sub>y</sub>
                                                                                                                                       2<sub>xz</sub>*
                           2_{xz}^{\tilde{z}}, 2_{\bar{x}z}^{\tilde{z}} 2_{xz}^{\tilde{z}} 2_{y}^{\tilde{z}}
                                                                                                                                                                   2_{xz}^{y} * \hat{2}_{y} \hat{2}_{\bar{x}z}^{z} *
 4_z/m_z m_x m_{xy} m_{xz}, m_{xz} m_z 3_p m_{xy} 4_x/m_x m_y m_{yz} m_x m_y m_z m_{xz} 4_y m_y m_x m_{xz} [010]
                                                                                                                    2\sqrt{m_y} m_{xz} m_{xz} m_{yx}
     2_{\rm v}/{\rm m}_{\rm v}
                            m_{xz}, m_{\bar{x}z} m_{xz} m_{y} m_{\bar{x}z} 2/m_{y}
3<sub>p</sub>
                                                                                                                                        2<sub>x</sub>* 2<sub>x</sub>*
                                                                                                                                                                   2<sub>x</sub>*
2<sub>x</sub>*
                            2_x, 3_r
                                                                                 \mathbf{3}_{\mathsf{r}}
                                                       2_z3_p
                                                                                                             1
                                                                                                                                                                                              [01\overline{1}]
                            2_x
                                                       \mathbf{2}_{\mathsf{x}}
                                                                                  1
                                                                                                             1
3<sub>p</sub>
                            \hat{m_x}, \overline{3}_r
                                                       m_z \bar{3}_p
                                                                                  3,
                                                                                                                                        m_x
                                                                                                                                                                   m<sub>x</sub>*
                                                                                                             1
                                                                                                                                                                                              [011]
                                                       m_x
                                                                                  1
     1
                            m_x
                                                                                                             1
                                                                                                                                        m_x^*
                                                                                                                                                                   m<sub>x</sub>*
                                                                                                                                       2<sub>xy</sub>*
                                                                                                                                                                  2<sub>xy</sub>*
                            2_{xy} , 4_{y}
                                                       4_z3_p2_{xy}
  3_p
                                                                                  3,
                                                                                                             1
                                                                                                                                                                                              [110]
                           \mathbf{2}_{xy}
                                                                                                                                                                  2<sub>xy</sub>
     1
                                                       2_{xy}
                                                                                  1
                                                                                                             1
                                                                                                                                        2<sub>xy</sub>,
3<sub>p</sub>
                            \mathbf{m}_{xy}^{xy}, \mathbf{\overline{4}}_{y} \mathbf{\overline{4}}_{z}^{xy} \mathbf{3}_{p} \mathbf{m}_{xy}
                                                                                                                                        m<sub>xy</sub>
                                                                                                                                                                   m<sub>xy</sub>*
                                                                                                                                                                                              [110]
                                                                                                                                       m<sub>xy</sub>,
     1
                           \mathbf{m}_{\mathsf{x}\mathsf{y}}
                                                      m_{xy}
                                                                                                                                                                   m<sub>xy</sub>
                                                                                  1
                                                                                                             1
  3<sub>p</sub>
                           m_x, 3_r
                                                                                  3,
                                                                                                                                                                   2_x*/m_x*[011]
                                                       m_z 3_p
                                                                                                                                        m_x
                                                                                  1
                                                                                                              1
                            2_x, m_x
                                                       2_x/m_x
                                                                                                                                        m<sub>x</sub>
                                                                                                                                                                   2_{x}*/m_{x}*
 3<sub>p</sub>
                                                                                                                                        2<sub>xy</sub>*
                            m_{xy}, 4_y m_z 3_p m_{xy}
                                                                                                              1
                                                                                                                                                                   2_{xy}*/m_{xy}*[1\overline{1}0]
                                                                                                                                                                  2_{xy}^{xy}*/m_{xy}^{xy}*
2_{x}*2_{yz}*2_{yz}[01\overline{1}]
                                                                                                                                        2<sub>xy</sub>*
2<sub>x</sub>*
                            2_{xy}, m_{xy} 2_{xy}/m_{xy}
                                                                                                              1
                                                                                 3<sub>r</sub>2<sub>xy</sub>
                                                                                                            \boldsymbol{2}_{\overline{y}z}
 \boldsymbol{3_{p}2_{\bar{x}y}}
                            2_x^{3}, 2_{yz}^{3} 4_z^{3} 2_{xy} 3_z^{2} 2_x 2_{yz} 2_{\overline{y}z} 2_{\overline{y}z} 2_{\overline{y}z}
                                                                                                            \boldsymbol{2}_{\overline{y}z}
                                                                                                                                                                   2_x^*2_{yz}^*2_{\overline{y}z}
                                                                                                                                        2<sub>x</sub>*
     2_{\overline{y}z}
                                                                                                                                                                   \hat{\mathbf{m}}_{\mathbf{x}}^{\mathbf{y}} \hat{\mathbf{m}}_{\mathbf{yz}}^{\mathbf{y}z} \hat{\mathbf{2}}_{\mathbf{y}z}^{\mathbf{z}} [01\overline{1}]
                                                                                                             \boldsymbol{2}_{\overline{y}z}
                            m_x, m_{yz} m_z 3_p m_{xy} 3_r 2_{xy}
  3_{p}2_{\bar{x}y}
                                                                                                                                        m_x^*
                                                                                                                                                                   m_x^* m_{yz}^{yz} = 2 \overline{y}z
                            m_x, m_{yz} \underline{m}_x m_{yz} \mathbf{2}_{\overline{y}z} \mathbf{2}_{\overline{y}z}
                                                                                                             \pmb{2}_{\overline{y}z}
                                                                                                                                        m<sub>x</sub>
     2_{\overline{v}z}
                                                                                                                                        2_x^*
                                                                                                                                                                   2_x * m_{yz} * m_{\overline{y}z} [01\overline{1}]
                            2_x, m_{yz} 4_z3_pm_{xy} 3_rm_{xy}
                                                                                                             m_{\overline{y}_{\boldsymbol{z}}}
  3_{\rm p} m_{\bar{x}v}
     m_{\overline{y}z}
                                                                                                             m_{\overline{y}z}
                                                                                                                                                                   2_x * m_{yz} * m_{\overline{y}z}
                            2_x, m_{vz} 2_x m_{vz} m_{\overline{v}z} m_{\overline{v}z}
                            m_x, 2_{yz} m_z 3_p m_{xy} 3_r m_{xy}
                                                                                                             m_{\overline{y}_{\boldsymbol{z}}}
                                                                                                                                                                   m_x^*2_{yz}^*m_{yz}^{-}[011]
  3<sub>p</sub>m<sub>₹v</sub>
    m_{\overline{y}z}
                                                                                                             m_{\overline{y}z}
                                                                                                                                                                   m_x^*2_{yz}^*m_{\overline{y}z}
                            m_x, 2_{yz} m_{\underline{x}}2_{yz}m_{\overline{y}z}\underline{m}_{\overline{y}z}
                            m_x, m_{yz} m_z3 p m_{xy} 3 p m_{xy}
                                                                                                            2_{\overline{y}z}/m_{\overline{y}z}
                                                                                                                                                                   m_x^* m_{vz}^* m_{\overline{v}z}^{-} [011]
     2_{\overline{v}z}/m_{\overline{v}z}m_x, m_{vz}m_xm_{vz}m_{\overline{v}z} 2_{\overline{v}z}/m_{\overline{v}z} 2_{\overline{v}z}/m_{\overline{v}z}
                                                                                                                                                                   m_x^* m_{vz}^* m_{\overline{v}z}
```