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ABSTRACT 
 
The form of macroscopic physical property tensors of a crystalline structure can be determined from its magnetic or non-
magnetic point group symmetry. In a ferroic crystal containing two or more equally stable domains of the same structure 
but of different spatial orientation, macroscopic tensorial physical properties that are different in  domains,  provide a 
tensor distinction of the  domains. The use of point group symmetries in this tensor distinction is reviewed in this paper: 
Point group symmetry based classifications of domains have been defined to determine if specific macroscopic tensorial 
physical properties can provide a tensor distinction of all or some domains which arise in a phase transition. For pairs of 
domains, the tensor distinction  is determined from a point group symmetry relationship, called a twin law. Recent work 
on domain average engineering in ferroics which focuses on the averaged point group symmetry and averaged physical 
properties of subsets of domains is also discussed.  
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1. POINT GROUPS1 
 

Traditionally, a crystalline medium is defined as a solid medium whose macroscopic physical properties can be 
characterized by associating with it a symmetry group which belongs to one of the 32 types of non-magnetic 
crystallographic point groups. If one considers only the purely geometrical characterization of a crystalline medium, the 
medium can also be considered trivially invariant under time inversion 1' . It follows that if a medium is invariant under 
an element R of a non-magnetic crystallographic point group R , it is then also invariant under the product R1' = R' . 
From a purely geometrical point of view, one might be tempted to then say that the medium and its physical properties 
are invariant under the group R1', the group consisting of all the elements R of  R and the elements R of R multiplied by 
time inversion. Such a view was taken up by, for example,  Zocher and Török2. However, such a view leads to erroneous 
predictions, as, for example, the prediction that the linear magnetoelectric effect is impossible in all crystalline media  
( see the book3 by O'Dell for a history of the belief in the impossibility of this effect prior to its discovery in 1960).  

 
Landau and Lifshitz4 (1951) stressed that the absence of time inversion symmetry is a necessary condition for the 

existence of magnetically ordered crystalline material, as for example, ferromagnetic and antiferromagnetic media.  For 
such materials, the medium and its physical properties are not invariant under a point group R1'. Dyaloshinski5 (1959), 
using the magnetic crystallographic point group of antiferromagnetic Cr2O3, correctly predicted the existence of the 
magetoelectric effect in this material, an effect which was experimentally verified soon after6,7.    

 
Consequently, it is not just the 32 types of non-magnetic crystallographic point groups nor the 32 types of groups 

magnetic crystallographic point groups which are to be used. Opechowski8 has classified these groups into magnetic 
superfamilies: Let R denote one of the 32 types of non-magnetic crystallographic point groups.  The magnetic 
superfamily of crystallographic groups of type R consists of : 

 
a) Groups of the type R. 
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b) Groups of the type R1' where the time inversion group 1' consists of the identity 1 and time inversion 
1'. 

c) Groups of the type R(D) = D + (R-D)1'  where D is a subgroup of index two of R.  
 
For example, the magnetic superfamily of R = 2/m consists of : 
 

a) Groups of the type  2/m      = { 1, 2, 1 , m }   = 2/m 
b) Groups of the type  2/m1'   = { 1, 2, 1 , m, 1', 2', 1 ', m' } = 2/m1' 
c) Groups of the type  2/m( 2 ) = { 1, 2, 1 ', m' }   = 2/m' 

        2/m( 1 ) = { 1, 2', 1 , m' }   = 2'/m' 
            2/m( m )= { 1, 2', 1 ', m }   = 2'/m 
 
On the extreme right are the symbols of these types of groups where the R(D) notation has been replaced with a  primed  
notation.  
 

A complete listing of the 122 types of magnetic crystallographic point groups in groupings of magnetic 
superfamilies is given in Table 1.   A computerized tabulation of  group theoretical properties of the magnetic 
crystallographic point groups has recently been published by Schlessman and Litvin9. We  shall use this short 
international notation of Table 1 throughout  this paper.  Note that we conform to the newest version of the International 
Tables for Crystallography10  where symbols m3 and m3m have been replaced by m 3  and m 3 m .  Other notations 
exist, e.g. the group type denoted by 2/m( m ) = 2'/m  is denoted by C2h ( Cs ) in Schonflies notation and 2':m  in 
Shubnikov notation11. If one were to interpret 1' not as time inversion but the exchanging of two colors, this list becomes 
a list of the 120 types of two-color (black and white) point groups12.  
 
 

2. PHYSICAL PROPERTY TENSORS 
 
  The derivation and tabulation of physical property tensors invariant under the magnetic and non-magnetic 
crystallographic point groups have been considered by many authors (Jahn13, Nye14, Birss15,  Kopsky16, Sands17, 
Brandmuller & Winter18,  Bhagavatam19, Bhagavatam and Pantulu20, Tenenbaum21, Grimmer22  and references contained 
in these sources). Tables of a wide variety of physical property tensors invariant under non-magnetic crystallographic 
point groups have been given by Sirotin & Shaskolskaya23 and Brandmuller, Bross, Bauer & Winter24 and for both 
magnetic and non-magnetic point groups will appear in the forthcoming Volume D of the International Tables for 
Crystallography25.  
 

The form of the physical property tensors invariant under magnetic crystallographic points can be derived from 
the existing tables of physical property tensors invariant under non-magnetic crystallographic point groups: Let V denote 
a polar vector tensor and Vn = V x V x …. x V the nth ranked product of V, and let e and a denote zero-rank tensors that 
change sign under spatial inversion 1  and time inversion 1' , respectively. It has been shown by Litvin26 that the form of 
a physical property tensor transforming as a tensor aVn, eVn, or aeVn invariant under a magnetic point group M is the 
same as the form of  a physical property tensor transforming as a tensor Vn or eVn invariant under a related non-magnetic 
point group R. Tables are given listing the groups R corresponding to all magnetic point groups M for tensor types26. 

 
 From the Taylor expansion of the density of stored free enthalpy, the polarization P, magnetization M, and 

mechanical deformation sij can be written in a third order expansion in terms of the electric field E , magnetic Field H, 
and stress tensor T as27: 
 
 Pi  = o

iκ  + ijκ Ej + (1/2) ijkκ EjEk + ijα Hj + ijkα HjEk + (1/2) ijkβ HjHk + dijkTjk 
 
 Mi = o

iχ  + ijχ Hj + (1/2) ijkχ HjHk + ijα Ej + ijkβ EjHk + (1/2) ijkα EjEk + gijkTjk 
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 sij  = o

ijs  + dijkEk + gijkHk 
 
In Table 2, the name of each coefficient, corresponding phenomena, and tensor type are given. A survey of these and 
higher order magnetoelectric effects has recently been given at this conference28. 
 
 For the magnetoelectric effect, the magnetoelectric susceptibility ijα  transforms as a tensor of the type  aeV2.  
From the tables of reference 22, the form of the magnetoelectric effect tensor invariant under the magnetic point group 
4 '2'm  is the same as the form of a tensor of the type eV2 invariant under the non-magnetic point group 4mm. The 
latter, for the point group 4zmxmxy  is given by Sirotin & Shaskolskaya23 as   

     
0 A 0
A 0 0
0 0 0

 
 − 
  

    

 
which agrees with the form of the magnetoelectric physical property tensor invariant under 4 z'2x'mxy given by Birss15. 
 
 

3. TENSOR DISTINCTION OF DOMAINS IN FERROIC CRYSTALS 
 
  A ferroic crystal contains two or more equally stable domains, volumes of the same homogeneous crystalline 
structure in different spatial orientations. These domains can coexist in a crystal and may be distinguished by the values 
of components of certain macroscopic tensorial physical properties of the domains. Crystals in which the domains may 
be distinguished by spontaneous polarization, magnetization, or strain are called primary ferroic crystals. Crystals who 
domains are characterized by differences in the piezoelectric tensor is an example of a secondary ferroic crystal29,30. 
Ferroic crystals have been discussed by Newnham31 and Wadhawan32 and secondary ferroic crystals in particular by 
Aizu29, Newnham and Cross33,34 and Newnham and Skinner35. 
 

Consider a ferroic phase transition, a phase transition of a crystalline structure from a phase of higher point 
group symmetry G to a phase of lower point group symmetry F.  In the lower symmetry phase there are n = *G*/*F* 
single domain states  S1,S2,...,Sn , where *G* and  *F* denote the number of elements in G and F, respectively. Single 
domain states have the same crystalline structure and differ only in their orientation in space.  Domain states will refer to 
the bulk structures, with their specific orientations in space, of domains in a polydomain sample. Several disconnected 
domains can have the same domain state. Domain states represent then the structures that appear in a polydomain 
sample, irrespective of in which domain.   

 
 In non-ferroelastic polydomain phases, the orientation of each domain state coincides with the orientation of a 
single domain state. The number of domain states is therefore the same as the number of single domain states. In 
ferroelastic polydomain phases, because of disorientations, i.e. rotations of domains that arise as a result of the 
requirement that neighboring domains in the polydomain sample must meet along a coherent boundary, domain states in 
general differ in their orientation from single domain states, and the number of domain states is in general greater than 
the number of single domain states. In distinction with domains in non-ferroelastic polydomain phases, the orientations 
are then, in general, not related by the rotational parts of the elements of G. We shall consider here ferroelastic 
polydomain phases in the parent-clamping approximation (Zigmund36; Janovec et al37) which disregards the 
disorientations. We disregard  the disorientations, the number and orientation of domain states in a ferroelastic 
polydomain sample then also coincide with the number and orientations of single domain states, as in non-ferroelastic 
polydomain samples.  
 
 The domain states, denoted also by  S1,S2,...,Sn  , are related by elements of G not in F: We write the group G in 
a left coset decomposition with respect to F 
 
    G = F + g2F + g3F + ... + gnF     (1) 
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where the elements gi, i = 1,2,...,n , g1=1, are called the coset representatives of the coset decomposition of G with 
respect to F. The choice of coset representatives is not unique, the coset representative gi can be replaced by gif , where f 
is an element of F. Defining the domain state S1 as the domain invariant under F, the orientations of the remaining 
domain states are related to S1 by the coset representatives of Eq. (1), i.e. Si = giS1, i = 2,3,...,n. In addition, each domain 
state Si , i = 1,2,...,n , is invariant under the group Fi / giFgi

-1. 
 
 For example, if G = 4z/mzmx'mxy'  and F = 2xy'/mxy' , then  
 
 
   F  =  { 1 1  2xy' mxy'   }  g1 = 1     F1 / g1Fg1

-1 =  2xy'/mxy' 
g2F  =  { 2z mz xy2 ' xym ' }  g2 = 2z  S2 = 2zS1 F2 / g2Fg2

-1 =   2xy'/mxy' 

g3F  =  { 2y' 4z z4  my'    }  g3 = 2y'  S3 = 2y'S1 F3 / g3Fg3
-1 = xy2 '/ xym ' 

g4F  =  { 2x' 3
z4  mx' 3

z4     }  g4 = 2x'  S4 = 2x'S1 F4 / g4Fg4
-1 = xy2 '/ xym ' 

 
 

We shall be interested here in what is referred to as tensor distinction, i.e. the distinction of the domains in a 
polydomain phase of a ferroic phase transition by macroscopic tensorial physical properties of tensor types T . As the set 
of domain states represent the structure of all domains in a polydomain phase, we consider the tensor distinction of the 
domain states. 

  
 We denote by Ti, i = 1,2,...,n , the form of the tensors of a tensor type T in the set of domain states S1,S2,...,Sn  of 
a polydomain sample. The tensors Ti, i=1,2,...,n are all given in a single coordinate system, e.g. the coordinate system of 
the parent phase structure or of one of the domain states. A tensor type T is said to be able to distinguish between two 
domain states, with corresponding tensors Ti and Tj of the type T, if Ti … Tj. In particular, we consider two types of 
tensor distinction problems: 
 
a) Global Tensor Distinction: We consider whether or not a tensor type T can distinguish among all domain states. 

 
b) Domain Pair Tensor Distinction:  For each pair of domain states, we consider whether or not a tensor type T can 
distinguish between the domain states of the domain pair. 
 
Global Tensor Distinction: Consider a ferroic phase transition of a crystalline structure from a phase of higher symmetry 
G to a phase of lower symmetry F. Let S1,S2,...,Sn denote the domain states of the lower symmetry phase, T a tensor 
type, and tensors Ti, i=1,2,...,n the form of the tensor type T in the domain states S1,S2,...,Sn. Following the terminology 
of Aizu38, if the set of tensors Ti, i = 1,2,...,n , are all distinct, then we shall say that the tensor T  provides a full 
distinction of the domain states Si , i = 1,2,...,n ,  and the transition is a full ferroic phase transition with respect to  tensor 
type T. Each domain state is then characterized by a distinct form of  tensor type T,  and macroscopic physical properties 
of this tensor type can distinguish all domain states. If the set of tensors Ti, i = 1,2,...,n, are not all distinct, but not all 
identical, then we shall say that the tensor T  provides a partial distinction of the domain states, and the transition is a 
partial ferroic phase transition with respect to  tensor type T. A tensor of  type T  can then distinguish among some but 
not all of the domain states. If the set of tensors Ti, i = 1,2,...,n , are all identical, then the tensor type T  provides no 
distinction, we shall say a null distinction, of the domain states. The transition is referred to as a null ferroic phase 
transition with respect to the tensor type T. 
 
 Litvin39 has subdivided the "null" case into two: The case where the set of tensors Ti, i = 1,2,...,n , are all 
identically zero, is referred to as zero distinction, and only in the case where the set of tensors are all identical and non-
zero is it referred to as null distinction.    
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 Concomitant with the classification of ferroic phase transitions into full, partial, null, and zero classes with 
respect to a specific tensor type T , is the classification of ferroic phase transitions with respect to the higher and lower 
symmetry phase groups G and F. Using a classification introduced by  Aizu40 , Litvin39 derived 247 classes of non-
magnetic ferroic phase transitions and a general method for determining the global tensor distinction for classes of 
ferroic phase transitions A tabulation of the global tensor distinction of all 247 classes of non-magnetic ferroic phase 
transitions for all non magnetic tensor types T of rank n < 4 has been given by Litvin41.  There has not been an analogous 
listing of the classes of magnetic ferroic phase transitions.  
 
Domain Pair Tensor Distinction: Consider a ferroic phase transition of a crystalline structure from a phase of higher 
symmetry G to a phase of lower symmetry F. Let S1,S2,...,Sn denote the domain states of the lower symmetry phase, T a 
tensor type, and tensors Ti, i=1,2,...,n the form of  tensor type T in the domain states S1,S2,...,Sn. We now consider all 
ordered domain pairs {Si,Sj}, i,j = 1,2,...,n , i … j . The tensors Ti and Tj of the two domain states in the domain pair 
{Si,Sj} can be determined as follows: if Ti is the form of  tensor type T that is invariant under the point group Fi, the 
point group of the domain state Si. Tj can be determined from Ti, Tj = gijTi, where gij is an element of G that transforms 
domain state Si into domain state Sj, i.e. Sj = gijSi. (Tj = gijTi only represents the equation that relates the components of 
the tensors. The actual equation depends on the transformational properties of the tensor type T and its rank (Nye14). The 
element gij is not unique, as any element of the coset gijFi can be used. Consequently, in a ferroic phase transition from G 
to F, the tensor distinction of a domain pair {Si,Sj} can be determined by the point group Fi and the element gij of G.  
 
 We will classify all possible domain pair {Si,Sj} into classes where all domain pair in a single class are 
distinguished by the same set of tensor types. To this end we introduce the following tensor classification of domain 
pair: 
 
 Two domain pairs, {Si,Sj} whose tensor distinction is determined by the point group Fi and element gij and 
{Si’,Sj’} whose tensor distinction is determined by the point group Fi’ and element gi’j’, are said to be in the same class of 
domain pair if there exists an element r of the full rotation group ℛ such that: 
     rFir-1 = Fi’            (2a) 
and 
     rgijr-1 = gi’j’fi’      (2b) 
 
where fi’ is an element of Fi’ . The appearance of the element fi’ in Equation (2b) is due to the non-uniqueness of the 
choice of the coset representative gi’j’. To remove any non-uniqueness in the Equations (2a,b), we can replace Equation 
(2b) with the condition: 
 
     rgijFir-1 = gi’j’Fi’      (2c) 
 
All elements of the coset gijFi , i.e. all elements of G that transform the domain state Si into the domain state Sj , are 
taken by Equation (2c) into all the elements of G that transform the domain state Si’ into the domain state Sj’ .  If two 
domain pairs belong to the same class of domain pair, then if a tensor type can (can not) distinguish between the first 
pair of domains, then it can (cannot) distinguish between the second pair of domains42. We shall refer to these classes of 
domain pair as equivalence tensor classes of domain pair, or simply as tensor classes of domain pair. 
 
 This tensor classification of domain pairs is equivalent to the following classification (Janovec43) of ordered 
domain pairs: Two domain pairs, {Si,Sj} and {Si’,Sj’} are said to be in the same class of domain pair if there exists an 
element r of the full rotation group ℛ such that  {rSi,rSj} = {Si’,Sj’}. This is a classification of ordered domain pairs. 
That is, the  unordered pair of domain pairs {Si,Sj} and {Sj,Si} are not automatically placed in the same tensor class. 
While if a tensor of type T can or cannot distinguish between domain state Si and Sj it is trivial to conclude it can or 
cannot distinguish between the domain states Sj and Si, we do not use a classification of unordered domain pairs.   
  
 There is a second classification of domain pair43. Because of its relationship to the double coset decomposition 
of G with respect to F, we shall refer to it as the classification of domain pair into double coset classes of domain pair. 
The double coset decomposition of G with respect to F is written as  
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   G = Fg1

dcF + Fg2
dcF + Fg3

dcF + … + Fgm
dcF    (3) 

 
where gi

dc, i = 1,2, …, m  are the double coset representatives. A symbol Fgi
dcF means the set of distinct elements   

fgi
dc f̂  , where f and f̂  are elements of F.  Sets of cosets  constitute a single double coset. For example, if  

G = 4z/mzmx'mxy'  and F = 2xy'/mxy' , then  
 
    Fg1

dcF  =  {  1 1  2xy' mxy'   }  g1
dc  = 1     

  Fg2
dcF  =  {  2z mz xy2 ' xym ' }  g2

dc  = 2z    

  Fg3
dcF   =  {  2y' 4z z4  my'        

       2x' 3
z4  mx' 3

z4     }  g3
dc  = 2y'  

where there are three double cosets, the third consisting of a set of two cosets.   
 

Two domain pairs {Si,Sj} and {Si’,Sj’} belong to the same double coset class of domain pair if there exists an 
element g of G such that {gSi,gSj} = {Si’,Sj’}.  All domain pairs belonging to the same double coset class also belong to 
the same tensor class of domain pair. However, domain pairs that belong to different double coset classes may also 
belong to the same tensor class of domain pair. For example, in a phase transition between G = 2x2y2z and F = 1 , where 
S2=2xS1 , S3=2yS1 , and S4=2zS1 , the two domain pairs {S1,S2} and {S1,S3} belong to two different double coset classes 
of domain pair.  In this case, in Equations (2) we have Fi = Fi’ = 1, gij = 2x , and  gi’j’ = 2y . With r = 2xy , Equations (2) are 
satisfied and these two domain pairs belong to the same tensor class of domain pair. 

Computer software exists to calculate the double coset classification of domain pairs for both non-magnetic44 
and magnetic9 point groups. These tabulations also provide indexing and point group symmetry of the domain states, 
permutations of the domain states under the elements of G, and  domain pair characterizing groups,  as well as the 
double coset classification of the domains. The number of double coset classes of domain pairs {Si,Sj} is equal to the 
number of double cosets in the double coset decomposition of G with respect to F. A list of one representative double 
coset from each class of double cosets is {S1, gi

dcS1}, i = 1, 2, … , m , where m is the number of double cosets in 
equation (3). For example, if G = 4z/mzmx'mxy'  and F = 2xy'/mxy' , then there are three classes whose representative 
domain pairs are {S1,S1}, {S1,S2} , and {S1,S3}.   
 
 Pairs of domains {Si,Sj} are characterized by two groups, the symmetry group and twinning group of the 
domain pair. The symmetry group Jij of the domain pair {Si,Sj} is defined  by  

 
Jij = Fij + gij* Fij       (4) 
 

where Fij = Fi  ∩ Fj consists of all elements that simultaneously leave both domain states invariant and gij* which 
interexchanges the two domain states, i.e. gij*Si = Sj and gij*Sj = Si .  The twinning group45 Kij  of a domain pair {Si,Sj} is 
defined by  
 

Kij = < Fi , gij >       (5) 
 

 
where Fi  is the point group of Si and gijSi = Sj, and is the group generated by gij  and the elements of the group Fi .  
 

For every magnetic point group G, subgroup F and representative domain pair {S1, gi
dcS1} ,   i = 2, 3, … , m  there 

exist tabulations of the domain pair’s symmetry group and twinning group9,44. The case i = 1 is not considered as the 
corresponding domain pair {Si,Sj} consists of identical domain states. We consider only one domain pair from each class 
because the relative spatial orientations is the same for the two domain states in each domain pair of a single class46.  For 
example, for G = 4z/mzmx'mxy'  and F = 2xy'/mxy' , for the domain pairs {S1,S2} , and {S1,S3} one has44:   
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{S1, gi
dcS1}      Jij = Fij + gij* Fij                       Kij = < Fi , gij > 

 
i = 2 {S1,S2}  mzmxy' xym ' = 2xy'/mxy' + 2z2xy'/mxy'         mzmxy' xym ' = <2xy'/mxy', 2z> 
 
i = 3 {S1,S3}              2y/my = 1  + 2y' 1               mzmxy' xym ' = <2xy'/mxy', 2z> 

 
Note that the tensor distinction of a domain pair {Si,Sj} is determined by the domain pair's twinning group.  The form Ti 
of a tensor of type T in the first domain Si  is that form of T invariant under Fi , the symmetry group of the first domain.  
In the second domain Sj , the form Tj of the tensor T  is given by Tj = gijTi . If the element gij leaves  Ti   invariant, then 
the tensor can not distinguish between the two domains of the domain pair. If the element gij does not leave Ti invariant, 
then the tensor can  distinguish between the two domains of the domain pair. Another way of interpreting this condition 
for the distinction of two domains is: If the form of a tensor of type T   invariant under Fi is (is not) also invariant under 
Kij  then the tensor of type T can not (can) distinguish between the domains of a domain pair {Si,Sj}. 

 
 To tabulate all tensor classes of domain pair {Si,Sj} one tabulates the group Fi and element gij of one domain 
pair from each tensor class of domain pairs. This has been done for non-magnetic point groups where one finds 139 
tensor classes of non-magnetic domain pair {Si,Sj}47 . In Table 3 we list the twenty-two tensor classes of domain pair 
where Fi  is a point group of the type 222 or mm2. An asterisk following the sequential numbering denotes the 43 
classes of non-ferroelastic domain pairs, domain pairs with the same (zero) spontaneous deformation (This number of 
classes differs from the 48 classes of non-ferroelastic domain pairs given in reference 48 because of the tensor 
classification scheme used here.) Those without an asterisk are tensor classes of ferroelastic domain pairs. Also listed is 
the twinning group Kij and for each of these classes, what is the tensor distinction for seven types of physical property 
tensors: e  enantiomorphism; V  spontaneous polarization; e[V2]  optical activity; V[V2]  piezoelectricity;   eV[V2]  
electrogyration;  [[V2]2]  linear elasticity; and  [V2]2   piezoptics . "Y" denotes that a physical property represented by a 
tensor of that tensor type can distinguish between the domains of domain pairs of that class. "N" denotes that the tensor 
can not distinguish between the domains, and "Z" denotes that the tensor is identically zero in both domains.  
 
 The purpose of the above classification of domain pairs into tensor classes is to provide a classification in 
which one can determine whether or not a tensor of a specific tensor type can or cannot distinguish between the domains 
of the domain pair. If a tensor of a specific type can distinguish between the domains, then subsequently one would wish 
to know which components are the same and which are different in the two domains. This additional problem we shall 
refer to as  tensor component distinction.  While we do not intend to focus on this problem here, the above classification 
of domain pairs into tensor classes has been chosen to take the tensor component distinction problem into account. For 
two pairs of domain pairs belonging to the same tensor class of domain pair there exist coordinate systems for each pair 
where the tensor component distinction is the same. That is, if a specific component is the same (different) within the 
domains of the  first domain pair, the identical component is the same (different) within the domains of the second pair. 
It is for this reason that a tensor classification has been defined where domain pairs belonging to classes #69 and #70 are 
in distinct classes even though the identical groups Fi and Kij are associated with them (And consequently the tensor 
distinction of domain pairs belonging to both these classes is identical.) The tensor component distinction of domain 
pairs of these two classes is different:  
 
 Consider the polarization tensor P and  two domain pairs, a domain pair of tensor class #69 with   
 
 Fi = xy z xym m 2  , gij = xzm  and Kij =  mz xyz3 mxy   Pi = (P,P,0)    Pj = (0,P,P) 
 
and a  domain pair of tensor class #70 with  
 
 Fi = xy z xym m 2  , gij = yz2  and Kij = mz xyz3 mxy   Pi = (P,P,0)     Pj = (-P,0,-P). 
 
While polarization does distinguish between the domains in both domain pairs, since both have the same Fi and Kij, the 
tensor component distinction is distinct. Comparing the polarization tensors in the domains of the domain pair of tensor 
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class #69 one finds that one component remains the same while the remaining two interexchange, while in the domains 
of the domain pair of tensor class #70 all three components change.  
 
 While a complete list of the 139 tensor classes of non-magnetic domain pairs has been derived, given in terms 
of 139 non-magnetic twinning laws,  there is no complete list  in the case of magnetic domain pairs. Only special cases 
have been considered. One such case is when the twinning group consists of two coset,    
 
    Kij = < Fi , gij > = Fi  + gij Fi      (6) 
 
where the element gij not only transforms Si into Sj of the domain pair{Si,Sj}  but also transforms Sj into Si  (this element 
interexchanges the two domains of the domain pair and consequently could be denoted as in the symmetry group, 
equation (4), as gij*).  Such twinning groups are called completely transposable twinning groups or twinning laws49  
( Previously, this was referred to as an ambivalent twin law50.) The point groups of the two domains Si and Sj of a 
domain pair {Si,Sj} having a completely transposable twinning group are the same, i.e. : 
 
    Fj ≡ gijFigij

-1 = Fi 
 
The completely transposable twinning group is uniquely characterized by the group Kij  and the group Fi, a subgroup of 
index two of Kij .  
 
 Completely transposable non-magnetic twin laws have been used in determining macroscopic tensorial physical 
properties that distinguish domains of a domain pair in the cases of non-ferroelastic and ferroelectric non-ferroelastic  
domains48,49.   Because Fi  is  a subgroup of index two of Kij , the mathematical structure of non-magnetic completely 
transposable twinning groups is the same as that of black and white (dichromatic, anti-symmetry) groups  and magnetic 
groups8,12.  For example, consider the non-magnetic completely transposable twinning group 
 
    4z2x2xy   =  4z  +  2x 4z  
 
where the elements of Fi = 4z = { 1,  4z,  2z,  1

z4−  }  leave invariant both of the domains of the domain pair {Si,Sj} , and 
the elements of the second coset  gijFi = 2x 4z = { 2x,  2y,  2xy,  xy2 } interexchange the two domains. This non-magnetic 
completely transposable twinning group has been given the symbol 4z2x'2xy'  , where an unprimed symbol as 4z  denotes 
that the element 4z leaves both domains invariant, and a primed symbol as 2x' denotes that the element 2x interexchanges 
the two domains of the domain pair48.  With the possibility of confusing this type of symbol with that of a magnetic point 
group, we do not use it.  Instead one could replace the prime with an asterisk, e.g.  4z2x*2xy*, where the asterisk now 
denotes that the symbol denotes an element which interexchanges the two domains.  
 
We use a double group notation Kij [Fi] for completely transposable twinning groups and have tabulated  the 380 classes 
of magnetic completely transposable twinning groups51. Let Q denote one of the 32 types of non-magnetic point groups, 
there are six types of magnetic completely transposable twinning groups 
 
1: Q[H]    2: Q1'[Q]   3: Q1'[H1'] = Q[H]1' 
            (7) 
4: Q1'[Q(H)] = Q(H)1'*  5: Q(H)[H]  6: Q(H)[K(N)] 
 
where H and K are  subgroups of index 2 of Q, and N is a subgroup of index 2 of K, a  prime denotes time inversion and 
an asterisk denotes that an element interexchanges the two domains.. Representative twinning groups of classes 
belonging to the family of Q = 222 are 
 
6.1 1 2x2y2z[2z]   2x*2y*2z    2x2y2z{2z} 
6.2 2 2x2y2z1'[2x2y2z]   2x2y2z1'*   2x2y2z1'* 
6.3 3 2x2y2z1'[2z1']   2x*2y*2z 1'   2x2y2z{2z}1' (8) 
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6.4 4 2x2y2z1'[ 2x'2y'2z]   2x'2y'2z1'*   2x2y2z(2z)1'* 
6.5 5 2x'2y'2z[2z]   2x'*2y'*2z   2x2y2z(2z){2z} 
6.6 6 2x'2y'2z[2x']    2x'2y'*2z*   2x2y2z(2z){2x(1)} 
 
The first column gives a sequential numbering. 
The second column gives the type of the twinning group with the numbering given in equation (7). 
The third column gives the double group notation Kij [Fi] . 
The fourth column gives a single group notation Kij where a prime denotes time inversion and an asterisk denotes that 
the element interexchanges the two domains.  
 
 The mathematical structure of magnetic completely transposable twinning groups is the same as that of the so-
called double anti-symmetry groups introduced by Zamorzaev  & Sokolov52-54, where the prime and asterisk here are the 
analogous double anti-symmetries. Double anti-symmetry point groups are defined in the following context: All points 
of a finite object are assigned two signs, each of which can take one of two values usually interpreted as a plus or minus 
sign. In addition to the point group transformations of the unsigned finite object, one defines transformations of the 
signs, a transformation 1' which reverses the value of the first sign and 1* which reverses the value of the second sign. A 
double anti-symmetry point group is an invariance group of such a signed finite object, i.e. the group of those point 
group transformations and point group transformations coupled with 1', 1* , or 1'* which leave the signed finite object 
invariant. By interpreting time inversion 1' and interexchanging of domains 1* as sign reversing transformations, a 
magnetic completely transposable twinning group becomes a double anti-symmetry  group.  In the fifth column in (8) we 
list the standard double anti-symmetry notation for the groups. The format of this notation is  A(B){C} where B is the 
subgroup of index 2 of A of elements which are not primed, and C is the subgroup of index 2 of A of elements which do 
not have an asterisk.  
 
 Of the 380 magnetic completely transposable twinning groups, 141 are non-ferroelastic magnetoelectric 
twinning groups55. That is, twinning groups of domain pairs where the two domains have the same (zero) spontaneous 
deformation tensor (they are non-ferroelastic) and have distinct magnetoelectric tensors. For a domain pair with the non-
ferroelastic magnetoelectric twinning group Kij[Fi] = 4z2x'2xy'[4z]  , in Table 4, we give the form of eight tensor types in 
the two domains . Note that the spontaneous deformation tensor [V2] is the same in both domains and the 
magnetoelectric tensor aeV2 is distinct.  
 

4. DOMAIN TENSORS AND TENSOR COVARIANTS 
 
 
 In describing the physical properties of crystals by tensors, the components of the tensors are usually given in a 
cartesian coordinate system14. However, in relating these components to parameters that drive phase transitions, it is 
more appropriate and revealing to relate these cartesian components first to what are called tensorial covariants56. 
Tensorial covariants are linear combinations of the cartesian components of tensors which transform as sets of basis 
functions of irreducible representations of the point group G in a phase a phase transition from a high symmetry phase 
with point group G to a lower symmetry phase of point group F57. These have been calculated57,58.  Extensive tables 
have been given by Kopsky59 which enable one to calculate the cartesian components of physical property tensors in 
domains, which arise in a phase transition from G to F, in terms of tensor covariants.  
 
 For example, in the phase transition from G = mz xyz3 mxy to F = mxmymz , which corresponds to phase 
transitions in lead zirconate60 and cesium lead chloride61 , the cartesian components of the spontaneous deformation 
tensor, "u" in the notation of Kopsky57, in terms of its tensorial covariants in the domain invariant under F = mxmymz are 
given by: 
 
  uxx = u+

1/3-u+
3x/3 +u+

3y/ 3   uxy = uyx = 0 
  uyy = u+

1/3-u+
3x/3 -u+

3y/ 3    uxz = uzx = 0 
  uzz = u+

1/3+u+
3x/3    uyz = uzy = 0 
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where u+

1 is invariant under G = mz xyz3 mxy , transforms as a basis function of the identity representation of G,  and { 

u+
3x , u+

3y }  transform as a set of basis functions for the 3
+Γ  irreducible representation of G.  Knowing how the tensorial 

covariants transform under elements of mz xyz3 mxy allows one to calculate the components of this tensor in each of the 
six domains which arise in this phase transition. The non-zero components are: 
 
  uxx     uyy     uzz 
 
S1 u+

1/3-u+
3x/3 +u+

3y/ 3    u+
1/3-u+

3x/3 -u+
3y/ 3    u+

1/3+u+
3x/3 

S2 u+
1/3+u+

3x/3    u+
1/3-u+

3x/3 +u+
3y/ 3    u+

1/3-u+
3x/3 -u+

3y/ 3  
S3 u+

1/3-u+
3x/3 -u+

3y/ 3    u+
1/3+u+

3x/3    u+
1/3-u+

3x/3 +u+
3y/ 3  

S4 u+
1/3-u+

3x/3 -u+
3y/ 3    u+

1/3-u+
3x/3 +u+

3y/ 3    u+
1/3+u+

3x/3 
S5 u+

1/3+u+
3x/3    u+

1/3-u+
3x/3 -u+

3y/ 3    u+
1/3-u+

3x/3 +u+
3y/ 3  

S6 u+
1/3-u+

3x/3 +u+
3y/ 3    u+

1/3+u+
3x/3    u+

1/3-u+
3x/3 -u+

3y/ 3  
 
In general59 it can be shown that in this phase transition only a tensor, as  a tensor of the type u,  with tensorial covariants 

which transform as a set of basis functions for the 3
+Γ  can distinguish between all six domains. That is, only these 

tensors are fully ferroic in Aizu's classification38. One can also find general relationships among the cartesian 
components from such tables, e.g. from the above,  
 

uxx(S1) = uyy(S2) = uzz(S3) = uyy(S4) = uzz(S5) = uxx(S6) 
uyy(S1) = uzz(S2) = uxx(S3) = uxx(S4) = uyy(S5) = uzz(S6) 
uzz(S1) = uxx(S2) = uyy(S3) = uzz(S4) = uxx(S5) = uyy(S6) 

 

If the phase transition is driven by a parameter which does not transform as or couple with  a basis function of 3
+Γ   then 

in the lower symmetry phase  u+
3x = u+

3y = 0 and  u11(Si)  = u22(Si) = u33(Si) for i = 1, 2, … , 6.  
 
 

5. DOMAIN AVERAGE ENGINEERING OF FERROICS 
 
 

Multidomain samples of ferroics (ferroelectrics, ferroelastics and related materials) can give rise to new  
macroscopic properties.   In domain-average-engineered samples of ferroic crystals the specimen is subdivided into a 
very large number of domains, representing µ domain states where µ is smaller than the theoretically allowed maximum 
number n, see Equation (1), and forming a regular or irregular pattern. Its response to external fields is roughly described 
by tensorial properties averaged over all involved domain states. An example of domain average engineering is the 
piezoelectric properties of PZN-PT single crystals poled along one of the {001} directions62-64. Assuming that the 
material went through the phase transition from G = m 3 m to F = 3m, poling along [100] supports the coexistence of 
four domain states with spontaneous polarization along the directions [111], [1 11], [11 1 ] and [1 1 1 ], with equal 
probability. The effective symmetry of a domain-average-engineered system is given by a point group.    
 
 The classification of subsets of domains and the determination of the effective symmetry point group of a 
domain-average-engineered sample has been given by Fousek, Litvin, & Cross65 : We consider a phase transition from a 
phase of higher point group symmetry G to a phase of lower point group symmetry F.  Two subsets of domains  
{S1, S2, ..., Sµ} and {S’1, S’2, ..., S’µ} are said to belong to the same class of subsets of domains if there exists and element 
g of G such that g{S1, S2, ..., Sµ} = {gS1, gS2, ..., gSµ}= {S’1, S’2, ..., S’µ}. The symmetry group H of a subset of domains 
{S1, S2, ..., Sµ} is defined as the group of all elements g of G which leave the set invariant, i.e. g{S1, S2, ..., Sµ} =  
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{S1, S2, ..., Sµ}. The group H represents the effective symmetry of the domain–average–engineered system consisting of 
the subset of domains {S1, S2, ..., Sµ}.  
 
 As an example, we consider the phase transition from G = m 3 m to F = 3xyz mxy . Here  n  = 8.  The indexing of 
the domain states, the corresponding coset representatives of the coset decomposition of G with respect to F,  the 
symmetry groups, and the corresponding polarizations in each domain state are given in Table 5.  All subsets of these 
domain states have been classified into classes as defined above.   In Table 6  we list one subset of domain states from 
each class. Each subset is denoted by listing, between square brackets, the indices of the domain states contained in that 
subset, the indices having been given in Table 5,  e.g. the subset {S1, S3, S5} is denoted by [135]. In the right-hand 
column is the subgroup H of elements of G which leave the corresponding subset invariant. This table, in fact, represents 
the list of domain-average-engineered systems which can arise in a material undergoing a phase transition from  m 3 m  
to 3m .  
 
 In Table 6 only one domain is listed from each class. In the class of four domains whose representative domain, 
listed in Table 6, is [1368]  are a total of 6 sets of four domains: ( A computer program to calculate the properties of the 
classification of subsets of domains, including listing all subsets of each class, has been developed by Shaparenko, 
Schlessman, & Litvin66 .) 
 

Subset of Domains Symmetry H of Subset 
 

[1278]   4xmymyz 
[1368]   4zmxmxy 
[1467]   4ymxmxz 
[2358]   4ymxmxz  
[2457]   4zmxmxy 
[3456]   4xmymyz   

 
In this class of subsets of four domains is the subset [1278] with corresponding polarizations along the directions [111], 
[1 11], [11 1 ] and [1 1 1 ], the set of polarization directions of the example given above. The point group of this subset is 
4xmymyz . 
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  Table 1: 122 types of magnetic crystallographic point groups. 
 
 

 
1  11' 
1   1 1'  1 ' 
2  21'  2' 
m  m1'  m' 
2/m  2/m1'  2'/m  2/m'  2'/m' 
222  2221'  2'2'2 
mm2  mm21'  m'm2'  m'm'2 
mmm  mmm1'  m'mm  m'm'm m'm'm' 
4  41'  4' 
4   4 1'  4 ' 
4/m  4/m1'  4'/m  4/m'  4'/m'  
422  4221'  4'22'  42'2' 
4mm  4mm1'  4'm'm  4m'm' 
4 2m  4 2m1'  4 '2'm  4 '2m'  4 2'm' 
4/mmm  4/mmm1' 4/m'mm  4'/mm'm 4'/m'm'm 4/mm'm' 4/m'm'm' 
3  31' 
3   3 1'  3 ' 
32  321'  32' 
3m  3m1'  3m' 
3 m  3 m1'  3 'm  3 'm'  3 m' 
6  61'  6' 
6   6 1'  6 ' 
6/m  6/m1'  6'/m  6/m'  6'/m' 
622  6221'  6'2'2  62'2' 
6mm  6mm1'  6'm'm  6m'm' 
6 m2  6 m21'  6 'm'2  6 'm2'  6 m'2' 
6/mmm  6/mmm1' 6/m'mm  6'/mm'm 6'/m'm'm 6/mm'm' 6/m'm'm' 
23  231' 
m 3   m 3 1'  m' 3 ' 
432  4321'  4'32' 
4 3m  4 3m1'  4 '3m' 
m 3 m  m 3 m1'  m' 3 'm  m 3 m'  m' 3 'm' 

 
 
 

Table 2: Physical Property Tensors 
 
 
 

 
Physical Property              Tensor Type     Symbol  Phenomena 
 

Spontaneous Polarization          V  Pi Pyro-, Ferro-, Ferrielectricity 

Spontaneous Magnetization      aeV  Mi Pyro-, Ferro-, Ferrimagnitism 
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Spontaneous Deformation       [V2]  ijε  Pyro-, Ferroelasticity 

Electric Susceptibility       [V2]  ijκ  Induced Polarization, Brillouin,   

       Raman, Raleigh scattering 

Magnetic Susceptibility       [V2]  ijχ  Induced Magnetization 

Magnetoelectric Susceptibility    aeV2  ijα  Magnetoelectric effect 

Piezoelectric Coefficient     V[V2]  dijk  Piezoelectricity 

Piezomagnetic Coefficient  aeV[V2]  gijk Piezomagetism 

Non-linear Electric Susceptibility       [V3]  ijkκ  Electro-Optic effect, Hyper Raman effect 

Non-linear Magnetic Susceptibility   ae[V3]  ijkχ  Magneto-Optic effect 

Magnetobielectric coefficient aeV[V2]  ijkα  Second order magnetoelectric effect 

Electrobimagnetic coefficient    V[V2]  ijkβ  Second order magnetoelectric effect 

 

 
 

 
Table 3: Tensor classification of domain pairs and tensor distinction. 

 
 

 
 
 Fi  gij  Kij         e    V        e[V2]     V[V2]   eV[V2]    [[V2]2]     [V2]2  
 
 
53)* 2x2y2z  1   mxmymz  Y, Z, Y, Y, N, N, N 
54) 2x2y2z  2xy  4z2x2xy  N, Z, Y, Y, Y, Y, Y 

              55) 2x2y2z  mxy  z4 2xmxy  Y, Z, Y, Y, Y, Y, Y 

56) 2x2y2z  3xyz  2z3xyz  N, Z, Y, Y, Y, Y, Y 

57) 2x2y2z  xyz  mz xyz3   Y, Z, Y, Y, Y, Y, Y 

58) 2xy2y2z  2z  4z3xyz2xy  N, Z, Y, Y, Y, Y, Y 

59) 2xy2y2z  mz  mz xyz3 mxy Y, Z, Y, Y,  Y, Y, Y 

60) 2x222z  21  6z2x21  N, Z, Y, Y, Y, Y, Y 
61) 2x222z  m1  6z/mzmxm1 Y, Z, Y, Y, Y, Y, Y 

62)* mxmy2z  1   mxmymz  Z, Y, Y, Y, N, N, N 
63) mxmy2z  mxy  4zmxmxy  Z, N, Y, Y, Y, Y, Y 

64) mxmy2z  2xy  z4 2xymx  Z, Y, N, Y, Y, Y, Y 

65) mxmy2z  2z  4x/mxmymyz Z, Y, Y, Y, Y,  Y, Y 

66) mxmy2z  3xyz  mz xyz3   Z, Y, Y, Y, Y, Y, Y 
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67) mxymy2z  mz  z4 3xyzmxy Z, Y, Y, Y, Y,  Y, Y 

68) mxymy2z  2z  mz xyz3 mxy  Z, Y, Y, Y, Y,  Y, Y 

69) xy z xym m 2  xzm   mz xyz3 mxy Z, Y, Y, Y, Y, Y, Y 

70) xy z xym m 2  yz2   mz xyz3 mxy Z, Y, Y, Y, Y, Y, Y 

71) mzmy21  22  z6 mx21   Z, Y, Y, Y, Y, Y, Y 

72) mzm22x  21   6z/mzmxm1 Z, Y, Y, Y, Y, Y, Y 
73) mxm22z  m1  6zmxm1   Z, N, Y, Y, Y, Y, Y 
74) mxm22z  21   6z/mzmxm1 Z, Y, Y, Y, Y, Y, Y 
 
 

 
 

Table 4: For the completely transposable magnetic twinning law Kij[Fi] = 4z2x'2xy'[4z] and the eight tensor types listed in 
the first column, the forms of the tensors Ti and Tj = 2x'Ti are given in the second and third columns, respectively. The 

tensor notation used is that of Sirotin & Shaskolskaya23. 
 
 

 
Tensor    Domain State Si   Domain State Sj 
  Type     Ti    Tj 
 

V    
0
0
A

     
0
0
A−

 

 

aeV    
0
0
A

      
0
0
A

 

 

[V2]    
A 0 0
0 A 0
0 0 B

    
A 0 0
0 A 0
0 0 B

 

 

aeV2    
A C 0
C A 0
0 0 B

−     
A C 0
C A 0
0 0 B

−
− −

−
 

 

V[V2]    
0 0 0 B A 0
0 0 0 A B 0
C C D 0 0 0

−  
0 0 0 B A 0
0 0 0 A B 0
C C D 0 0 0

−
− −

− −
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aeV[V2]    
0 0 0 B A 0
0 0 0 A B 0
C C D 0 0 0

−  
0 0 0 B A 0
0 0 0 A B 0
C C D 0 0 0

−
 

 

[V3]    
0 0 0 0
0 0 0
A A B

   
0 0 0 0
0 0 0
A A B− − −

 

ae[V3]    
0 0 0 0
0 0 0
A A B

   
0 0 0 0
0 0 0
A A B

 

 

 

Table 5: Domain state index, coset representative, symmetry group and polarization. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Index i Coset 

Representative gi 

Fi = giF1gi
-1 Pi = giP1 

1 1 3xyz xym   ( A,  A,  A) 

2 2x xyz yz3 m  ( A, -A, -A) 

3 2z xyz xy3 m  (-A, -A,  A) 

4 2y xyz xz3 m  (-A,  A, -A) 

5 1   3xyz xym  (-A, -A, -A) 

6 mx xyz yz3 m  (-A,  A,  A) 

7  mz xyz xy3 m  ( A,  A, -A) 

8  my xyz xz3 m  ( A, -A,  A) 
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Table 6: Representative subsets of domain states for the species m 3 m to 3m and the subgroups of m 3 m which leave 
them invariant. 

 
 
 

 

 

 
 

 

Representative subset 
Symmetry H of  

the subset 

  [1]  or  [2345678]  3xyz xym    

  [13]  or  [245678]  xy xym m 2z   

  [15]  or  [234678]  3 xyz xym   

  [16]  or  [234578]  x yzm m 2yz  

  [123]  or  [45678]  3xyzmxz  

  [135]  or  [24678]  xym  

  [136]  or  [24578]  mxy  

  [1234] 43m  

  [1235]  xzm  

  [1238]  xyz xz3 m  

  [1356]  xz2  

  [1357]  xy xy zm m m  

  [1368]  4zmxmxy  
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