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Abstract
An algorithmic method is presented for determining all domain configurations
and their symmetries in domain average engineered structures. This method is
applied to PZN–PT single crystals by determining the domain configurations
of domain states which arise in a phase transition between G = m3̄m and
F = 3m.

In domain average engineered samples of ferroic crystals [1], the sample is subdivided into
a very large number of domains representing m domain states Si , i = 1, . . . , m, where m is
equal to or smaller than the theoretically allowed maximum number n. The tensorial properties
of such crystals are taken to be averages over all domains of the sample:

Tave =
m∑

i=1

Vi Ti (1)

where Ti is a tensor property of the i th domain state Si and Vi is the fraction of the total volume
of the sample made up of domain states Si . A sample, defined by its constituent domain
states Si , i = 1, . . . , m, and their corresponding fractional volumes Vi , i = 1, . . . , m, will
be referred to as a domain configuration. A specific domain configuration consisting of the
domain states Si , i = 1, . . . , m, will be denoted by [S1, . . . , Sa][Sb, . . . , Sc] · · · [Sk, . . . , Sm]
where all domain states in each subtuplet of domain states, within the same square brackets,
have the same fractional volume. In this letter we give an algorithmic method for determining
all domain configurations in a domain average engineered sample of domains that have arisen
in a phase transition between a phase of higher point group symmetry G and one of lower
point group symmetry F .

A method was given in [2] for determining all domain configurations in the special case
where the domain states were of equal fractional volume. This method was applied to PZN–PT
by considering the phase transition between G = m3̄m and F = 3m. A highly mathematical
analysis was given in [3] for determining the domain configurations in the general case of
non-equal fractional volumes. This was also applied to the case of domain configurations
of PZN–PT, but an exhaustive listing of all domain configurations was not explicitly given.
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Table 1. Representative subsets of domain states for G = m3̄m and F = 3̄xyzmx̄ y , and the
subgroups H of m3̄m that leave them invariant.

Representative subset Symmetry H

{1}; {2345678} 3xyzmx̄ y

{13}; {245678} mxymx̄ y2z

{15}; {234678} 3̄xyzmx̄ y

{16}; {234578} mx mȳz2yz

{123}; {45678} 3x ȳzmx̄z

{135}; {24678} mx̄ y

{136}; {24578} mxy

{1234} 4̄z3xyzmxy

{1235} mx̄z

{1238} 3x ȳzmx̄z

{1356} 2x̄ z

{1357} mxymx̄ ymz

{1368} 4zmx mxy

Table 2. Domain configurations and their symmetries derived from the subset of domain states
{1368}.

Subgroup K ⊆ 4zmx mxy Domain configuration Symmetry

(1) 4zmx mxy [1368] 4zmx mxy

(2) 4z [1368] 4zmx mxy

(3) mxymx̄ y2z [13][68] mxymx̄ y2z

(4) mx my2z [1368] 4zmx mxy

(5) mxy [6][8][13] mxy

(6) mx̄ y [1][3][68] mx̄ y

(7) mx [16][38] mx

(8) my [18][26] my

(9) 2z [13][68] mxymx̄ y2z

(10) 1 [1][3][6][8] 1

Here we give an alternative method for determining all domain configuration in the general case
based not on the highly mathematical concepts of [3] but on a generalization of the symmetry
analysis of [2]. As we present this algorithmic method, we shall in parallel derive all domain
configurations in the case of PZN–PT.

Consider the phase transition from G to F . The symmetry analysis of the domain
configurations is based on the coset decomposition of the point group G with respect to its
subgroup:

G = F + g2F + g3F + · · · + gnF (2)

where the elements gi are coset representatives of the decomposition and g1 = 1. The relative
orientations of the domain states are given by Si = gi S1. The closure of the group G under
multiplication implies a permutation of the cosets of the coset decomposition (2) and in turn
a permutation of the domain states Si under elements g of G. The action of an element g of
G on Si is defined by gSi = ggi S1 = gk f S1 = gk S1 = Sk , where f is an element of F , and
the domain state Si is transformed by the element g into the domain state Sk . The action of an
element g of G on a domain configuration is

g[S1, . . . , Sa][Sb, . . . , Sc] · · · [Sk, . . . , Sm]

= [gS1, . . . , gSa][gSb, . . . , gSc] · · · [gSk, . . . , gSm]. (3)
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Table 3. Representative domain configurations of domain states in the phase transition between
m3̄m and 3̄xyzmx̄ y .

Domain Conditions on
configuration Symmetry fractional volumes

[1] 3xyzmx̄ y

[13] mxymx̄ y2z

[1][3] mx̄ y V[1] �= V[3]

[15] 3̄xyzmx̄ y

[1][5] 3xyzmx̄ y V[1] �= V[5]

[16] mx mȳz2yz

[1][6] mȳz V[1] �= V[6]

[123] 3x ȳzmx̄z

[1][23] mx̄z V[1] �= V[23]

[1][2][3] 1 V[2] �= V[3]

[1][3][5] mx̄ y

[6][13] mxy

[1][3][6] 1 V[1] �= V[3]

[1234] 4̄z3xyzmxy

[1][234] 3xyzmx̄ y V[1] �= V[234]

[12][34] myzmȳz2x V[12] �= V[34]

[2][4][13] mxy V[2] �= V[4] or V[2] �= V[13] or V[4] �= V[13]

[1][2][3][4] 1

〈 V[1] �= V[3]
V[1] �= V[2] or V[3] �= V[4]

V[3] �= V[4] or V[2] �= V[4] or V[2] �= V[3]

〉

[1][5][23] mx̄z

[1][2][3][5] 1 V[2] �= V[3]

[8][123] 3x ȳzmx̄z

[2][8][13] mxy V[2] �= V[13]

[1][2][3][8] 1 V[1] �= V[3]

[15][36] 2x̄ z

[1][3][5][6] 1 V[1] �= V[5] or V[3] �= V[6]

[1357] mxymx̄ ymz

[17][35] mx̄ ymz2xy V[17] �= V[35]

[13][57] mxymx̄ y2z V[13] �= V[57]

[15][37] 2x̄ y/mx̄ y V[15] �= V[37]

[1][3][5][7] mx̄ y

〈 V[1] �= V[5] or V[3] �= V[7]
V[1] �= V[3] or V[5] �= V[7]
V[1] �= V[7] or V[3] �= V[5]

〉

[1368] 4zmx mxy

[13][68] mxymx̄ y2z V[13] �= V[68]

[6][8][13] mxy V[6] �= V[8]

[16][38] mx V[16] �= V[38]

[1][3][6][8] 1

〈
V[1] �= V[3]

V[1] �= V[6] or V[3] �= V[8]

〉
[2][4][8][57] mxy

[2][4][5][7][8] 1 V[5] �= V[7]

[7][24][68] mx̄ y

[2][4][6][7][8] 1 V[2] �= V[4] or V[6] �= V[8]

[4][8][567] 3x ȳzmx̄z

[4][6][8][57] mxy V[6] �= V[57]

[4][5][6][7][8] 1 V[5] �= V[7]
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Table 3. (Continued.)

Domain Conditions on
configuration Symmetry fractional volumes

[25][3478] mx mȳz2yz

[25][38][47] mx V[38] �= V[47]

[25][37][48] 2yz V[37] �= V[48]

[2][5][34][78] mȳz V[2] �= V[5] or V[34] �= V[78]

[2][3][4][5][7][8] 1

〈 V[3] �= V[4] or V[7] �= V[8]
V[2] �= V[5] or V[3] �= V[7] or V[4] �= V[8]
V[2] �= V[5] or V[3] �= V[8] or V[4] �= V[7]

〉

[234678] 3̄xyzmx̄ y

[234][678] 3xyzmx̄ y V[234] �= V[678]

[37][2468] 2x̄ y/mx̄ y V[37] �= V[2468]

[28][37][46] 2x̄ y V[28] �= V[46]

[26][37][48] 1̄ V[26] �= V[48]

[3][7][24][68] mx̄ y

〈
V[3] �= V[7] or V[24] �= V[68]
V[3] �= V[24] or V[7] �= V[68]

〉

[2][3][4][6][7][8] 1

〈 V[6] �= V[8]
V[2] �= V[6] or V[3] �= V[7] or V[4] �= V[8]
V[2] �= V[8] or V[3] �= V[7] or V[4] �= V[6]

〉

[24][57][68] mxymx̄ y 2z

[5][7][24][68] mx̄ y V[5] �= V[7]

[2][4][6][8][57] mxy V[2] �= V[4] or V[6] �= V[8]

[2][4][5][6][7][8] 1

〈
V[5] �= V[7]

V[2] �= V[4] or V[6] �= V[8]

〉
[5][234][678] 3xyzmx̄ y

[3][5][7][24][68] mx̄ y V[3] �= V[24] or V[7] �= V[68]

[2][3][4][5][6][7][8] 1 V[2] �= V[4] or V[6] �= V[8]

[12345678] m3̄m
[1234][5678] 4̄z3xyzmxy V[1234] �= V[5678]

[15][234678] 3̄xyzmx̄ y V[15] �= V[234678]

[1][5][234][678] 3xyzmx̄ y

〈
V[1] �= V[5] or V[234] �= V[678]
V[1] �= V[234] or V[5] �= V[678]

〉
[1368][2457] 4zmx mxy V[1368] �= V[2457]

[1357][2468] mxymx̄ y mz V[1357] �= V[2468]

[28][46][1357] mxymz2x̄ y V[28] �= V[46]

[13][24][57][68] mxymx̄ y 2z

〈 V[13] �= V[57] or V[24] �= V[68]
V[13] �= V[68] or V[24] �= V[57]
V[13] �= V[24] or V[57] �= V[68]

〉

[26][48][1357] 2xy/mxy V[26] �= V[48]

[17][28][35][46] mz V[17] �= V[35] or V[28] �= V[46]

[17][26][35][48] 2xy V[17] �= V[35]

[15][26][37][48] 1̄

〈
V[15] �= V[37]

V[26] �= V[37] or V[26] �= V[48] or V[37] �= V[48]

〉

[2][4][6][8][13][57] mxy

〈 V[2] �= V[6] or V[4] �= V[8] or V[13] �= V[57]
V[2] �= V[4] or V[6] �= V[8]

V[2] �= V[8] or V[4] �= V[6] or V[13] �= V[57]

〉

[1][2][3][4][5][6][7][8] 1
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For a given G and F , all domain configurations are classified into classes of equivalent
domain configurations: two domain configurations [S1, . . . , Sa][Sb, . . . , Sc] · · · [Sk, . . . , Sm]
and [S′

1, . . . , S′
a][S′

b, . . . , S′
c] · · · [S′

k, . . . , S′
m ] are said to belong to the same class of equivalent

domain configurations if there exists an element g of G such that

g[S1, . . . , Sa][Sb, . . . , Sc] · · · [Sk, . . . , Sm] = [S′
1, . . . , S′

a][S′
b, . . . , S′

c] · · · [S′
k, . . . , S′

m ]. (4)

That is, the unprimed domain configuration is transformed by g into the primed domain
configuration. In determining all domain configurations for a given G and F we shall explicitly
list only one domain configuration from each class. The remaining domain configurations
in each class are derived by applying all elements g of G to these representative domain
configurations.

The subsets {S1, . . . , Sm} of all domain states in the domain configurations can also be
classified into classes of equivalent subsets of domain states: two subsets {S1, . . . , Sm} and
{S′

1, . . . , S′
m} are said to belong to the same class of equivalent subsets of domain states if there

exists an element g of G such that

g{S1, . . . , Sm} = {gS1, . . . , gSm} = {S′
1, . . . , S′

m}. (5)

The symmetry group H of a subset of domain states is defined as the subgroup of all
elements g of G which leaves the subset invariant:

g{S1, . . . , Sm} = {gS1, . . . , gSm} = {S1, . . . , Sm}. (6)

This classification was used in [2] and is equivalent to the classification of all domain
configurations of domain states with equal fractional volumes. A computer program is
available [4] which calculates the classes of equivalent subsets of domains and their symmetries
for any pair of point groups G and F .

Given a point group G and subgroup F , the first step in determining all domain
configurations is to determine one representative subset of domain states from each
class of equivalent subsets of domain states and its symmetry group H . For G =
m3̄m and F = 3̄xyzmx̄ y , the coset representatives gi, i = 1, . . . , 8, can be chosen as
1, 2x, 2z, 2y, 1̄, mx , mz, m y , respectively. Representative subsets and their symmetries of the
20 classes of equivalent subsets of domain states are given in table 1. Each subset is denoted
by listing the indices of the domain states contained in that subset.

Next, for each representative subset of domain states, we determine all domain
configurations which contain these domain states. For each representative subset {S1, . . . , Sm}
of symmetry H we list all subgroups K ⊆ H . For each K we partition {S1, . . . , Sm} into
a set of subtuplets {S1, . . . , Sa}{Sb, . . . , Sc} · · · {Sk, . . . , Sm} where all domain states of each
subtuplet can be obtained by acting on one domain state with all elements k of K. (These
subtuplets are known as K-orbits of domain states in {S1, . . . , Sm}.) For each such partition
we construct a domain configuration [S1, . . . , Sa][Sb, . . . , Sc] · · · [Sk, . . . , Sm] by taking the
fractional volumes of all domain states in each subtuplet to be the same. We denote by V[s...v]

the fractional volume of each domain state in the subtuplet [Ss , . . . , Sv]. We temporarily
assume that the fractional volumes of the subtuplets are distinct, and determine the symmetry
of the domain configuration. If the group H contains sets of conjugate subgroups K, then one
performs this construction only for one subgroup K of each conjugate set of subgroups. The
use of additional subgroups in a set of conjugate subgroups will only give rise to equivalent
domain configurations. One then lists all distinct domain configurations.

For example, for the representative subset {1368} of symmetry H = 4zmx mxy we list in
table 2 the subgroups K ⊆ H , the domain configuration determined by the partitioning of the
set of domain states with respect to K, and the symmetry group of the domain configuration.
The first, second, and fourth domain configurations so derived,as well as the third and ninth, are
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identical. Also, the fifth and sixth, and the seventh and eighth, use pairs of conjugate subgroups
of H = 4zmxmxy . Consequently we have, derived from {1368}, five non-equivalent domain
configurations where the fractional volumes of the subtuplets are distinct. All such non-
equivalent domain configurations for G = m3̄m and F = 3̄xyzmx̄ y and their symmetries are
listed in the first two columns of table 3.

We now relax the condition that the fractional volumes of the domain states of each
subtuplet in a domain configuration are distinct. All relationships among the fractional volumes
are allowed under the criterion that the relationships do not lead to a domain configuration of a
higher symmetry. In column three of table 3 we list conditions that the relationships must fulfil
to satisfy this criterion. Some domain configurations have no conditions on the relationships
among the fractional volumes. Others have optional conditions separated by the word or, and
others multiple optional conditions given on separate lines. With these conditions table 3 is
now a list of one representative domain configuration from each class of equivalent domain
configurations. A complete listing of all domain configurations, in this example, is obtained
by applying all elements of G = m3̄m to each of the representative domain configurations
listed in table 3.

This material is based on work supported by the National Science Foundation under grant
No DMR-0074550.
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