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A domain average engineered sample of a multidomain ferroic consists of a very large number
of crystalline domains, representing m domain states. m is less than the theoretically allowed
maximum number n of domain states. The symmetry of such an engineered sample is shown to
be the symmetry of a composite and consequently the concept of latent symmetry, which has
explained unexpected symmetries of composites of geometrically shaped objects, can give rise
to unexpected symmetries of domain average engineered ferroics. Two theorems of Vlachavas
(Acta Cryst., A40 213–221 (1984)) on the symmetry of composites, by not considering the
possibility of latent symmetry, are shown to be invalid.
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INTRODUCTION

Static distributions of domains which lead to practical applications are the do-
main average engineered (DAE) multidomain ferroics [1]. Samples consists
of a very large number of domains, representing m domain states where m
is less than the theoretically allowed maximum number n of domain states.
The response of a DAE sample to external fields is roughly described by
tensorial properties averaged over all of the domain states involved. Fousek
and Litvin [2] have introduced a classification of subsets of the domain
states which arise in a ferroic phase transition from a parent phase of point
group symmetry G to a ferroic phase of symmetry F ⊂ G, and have shown
how to calculate the effective symmetry of DAE samples. Because of the
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piezoelectric properties of PZN-PT single crystals poled along one of the
{001} directions [3–6], the phase transition from m3̄m to 3m was considered
there, assuming that all m represented domains appear with equal probability
among the large number of domains of the sample. A program to determine
the point group symmetry of equal probability DAE samples has been de-
veloped by Shaparenko, Schlessman, and Litvin [7]. Fuksa and Janovec [8]
have considered the general problem for point groups, i.e. without assuming
the equal probability of represented domains. Hatch and Stokes have con-
sidered the formation of domains without restricting their considerations to
point groups and have classified domains arising from structural changes
in any space group [9]. They have also developed a program [10] to deter-
mine the symmetry of DAE ferroics in the general case (they do not assume
equally probable domains) for any group-subgroup phase transition.

In this paper we shall show that the symmetry of a DAE sample of ferroics
is the same as that of the symmetry of a composite. As a consequence, the
concept of latent symmetry, which has been shown to explain unexpected
symmetries in the point group symmetry of composites of geometrically
shaped objects [11, 12], could also explain unexpected symmetries found in
DAE samples of crystalline ferroics. Finally, two theorems by Vlachavas on
the symmetry of composites are shown to be invalid.

COMPOSITES

A composite S = {A, g2 A, . . . , gm A} was defined by Litvin and Wadhawan
[11] as an unordered set of objects constructed by applying a set
{g1, g2, . . . , gm}, where g1 = 1, of isometries to an object A of intrinsic
symmetry F. The objects are called the components of the composite. The
symmetry of the composite is the symmetry of the superposition of the m
components. The latent symmetry of the composite is any symmetry of the
composite which is not a product of elements of the group F and the set of
isometries {g1, g2, . . . , gm}. Cases of latent symmetry have been shown to
be related to symmetries of subunits [12] of the object A and others to partial
symmetries of components [11].

For example, in Fig. 1(a) we show a two-dimensional component A of
symmetry F = mx. In Fig. 1(b) we show the composite S = {A, my A}. The
symmetry of the composite is 4zmxmxy and contains the latent symmetries
4z, 4−1

z , mxy , and m x̄y, i.e. symmetries which are not products of F = mx and
the isometries {g1, g2} = {1, my}. In Fig. 2(a) we have a two-dimensional
crystal of symmetry F = p2z with the translational subgroup T = 〈aî, aĵ〉.
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Figure 1. (a) Two dimensional components of A, (b) Composite S = {A, my A}.

(a)

(b)

Figure 2. (a) Two dimensional crystal (b) Composite {A, g2 A} where A is the
component of two dimensional crystal.
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In Fig. 2(b) we have the composite {A, g2 A} where the component A is
the two-dimensional crystal of Fig. 2(a) and g2 = my. The symmetry of the
composite is p4zmxmxy with no change in the translational symmetry. The
symmetry of the composite contains latent symmetries 4z, 4−1

z , mxy , and
mx̄y, symmetries which are not products of elements of F = p2z and the
isometries {g1, g2} = {1, my}.

DOMAIN AVERAGE ENGINEERED FERROICS

Consider a ferroic phase transition from a parent phase of symmetry G to
a ferroic phase of symmetry F ⊂ G. From the coset decomposition G =
F + g2F + · · · + gnF, where g1 = 1, the ferroic phase consists of n types of
domains Di = gi D1, i = 1, 2, . . . , n where the symmetry of the domain of
type D1 is F.

In a DAE sample, the sample consists of a very large number of do-
mains, representing m < n of the n possible types of domain states. Assum-
ing the equal representation of the m types of domain states, the symmetry
of the sample is the symmetry of the superposition of the set of m do-
main states {D1, D2, . . . , Dm} = {D1, g2 D1, . . . , gm D1}. Consequently, the
symmetry of a DAE ferroic sample is the symmetry of the composite {D1,
g2 D1, . . . , gm D1} made up of the component D1 and components gener-
ated from D1 by the set of isometries {g1, g2, . . . , gm}. [In the more general
case where subsets of the m domain states are not equally represented in
the engineered sample, the symmetry of the sample is that of the set of
composites {D1, ., ga D1}{gb D1, ., gc D1} . . . {gk D1, ., gm D1}, each compos-
ite containing equally represented domains.] It follows, e.g. Fig. 2(b), that
the symmetry of DAE samples may contain latent symmetries, i.e. symme-
tries which are not products of the elements of the group F and the set of
isometries {g1, g2, . . . , gm}.

VLACHAVAS’ THEOREMS ON COMPOSITES

Vlachavas [13] has given the following two theorems: (1) Given a two compo-
nent composite {A, g A} where the component A is of point group symmetry
F, the order of the point group symmetry of the composite is 2/k the order of
the group F where “k” is a positive integer and the corollary (2) The lowest
order of the composite point group symmetry is 2 and the highest is two times
the order of the group F. The composites in Fig. 1 is a counterexample to
this theorem [14], as also is the example in Fig. 2.
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In Fig. 1(a), the order of the point group symmetry F = my of the compo-
nent A is 2. The theorem predicts the order of the point group symmetry of the
composite, shown in Fig. 1(b), to be either (2/1) × 2 = 4 or (2/2) × 2 = 2
while the order of the actual point group symmetry 4zmxmxy of the compos-
ite is 8. For the second example, the point group symmetry of Fig. 2(a) is
F = 2z. The theorem predicts that the point group symmetry of the compos-
ite in Fig. 2(b) is of order 2 or 4. The actual point group symmetry of Fig. 2(b)
is 4zmxmxy, of order 8. It follows that the tables concerning the listings of
all possible symmetries of composites made up of two components are not
complete, i.e. Table 3 of reference [13] and Table 1 of the work by Ponds
and Vlachavas on bicrystallography [15].

While these two tables are invalid for composites they are valid for
bicrystals. This is a consequence of the construction of a bicrystal from
a two-component composite, i.e. after the introduction of a boundary into
the two-component composite, one component is deleted from one side of
the boundary and the second component from the other side. Any symmetry
of the bicrystal must either leave each of the components simultaneously
individually invariant, or the symmetry must completely exchange the two
components. This is not the case for composites where a symmetry may
also transform part of a component into the same component and another
part of the component into a different component, as the symmetry 4z in
Fig. 1(b).

ACKNOWLEDGEMENTS

This material is based, in part, on work supported by the National Science
Foundation under grant No. DMR-0074550.

REFERENCES

[1] J. Fousek and L. E. Cross, Ferroelectrics 252, 171–180 (2001).
[2] J. Fousek and D. B. Litvin, J. Phys.: Condens. Matter 13, L33–L38, (2001).
[3] S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997).
[4] S. Wada, S. E. Park, L. E. Cross, and T. R. Shrout, Ferroelectrics 221, 147–155

(1999).
[5] J. Yin and W. Cao, J. Appl. Phys. 87, 7438–7441 (2000).
[6] B. Shaparenko, J. Schlessman, and D. B. Litvin, Ferroelectric 269, 9–14 (2002).
[7] J. Fuksa and V. Janovec, J. Phys: Condens. Matter 14, 3795–3812 (2002).
[8] D. M. Hatch and H. T. Stokes, Isotropy Subgroups of the 230 Crystallographic Space

Groups (World Scientific, Singapore, 1988).



70/[536] D. B. LITVIN et al.

[9] H. T. Stokes and D. M. Hatch (2000). ISOTROPY software and documentation is available
over the internet at www.physics.byu.edu/∼stokesh/isotropy.html. Multidomain symme-
tries are contained within this space group program.

[10] D. B. Litvin and V. K. Wadhawan, Acta Cryst. A57, 435–441 (2001).
[11] D. B. Litvin and V. K. Wadhawan, Acta Cryst. A58, 75–76 (2002).
[12] D. S. Vlachavas, Acta Cryst. A40, 213–221 (1984).
[13] V. K. Wadhawan, Mater. Res. Bull. 22, 651–660 (1987).
[14] R. C. Pond and D. S. Vlachavas, Philos. Trans. R. Soc. London. Ser. A 386, 95–143

(1983).


	Back to Contents

