

Refinement on weak or problematic small molecule data using SHELXL-97

Single Crystal and Powder Diffraction Software Workshop

24 August 2003 ECM-21 Durban, South Africa

Alexander J. Blake, School of Chemistry The University of Nottingham, Nottingham UK

Problem structures

twinning

pseudosymmetry

crystal size

residual e-

voids

absorption

ADPs

H atoms

disorder

etc

Restraints and constraints

→ Restraints: formally, add extra observations

Example: all B-F distances in BF₄- are similar

→ Constraints: formally, fix parameters

Example: atoms fixed on special positions

The use of either must be justifiable

The system

a range of hexanuclear supramolecular cages

utilising

a ligand which is both blocking and chelating

A hexanuclear cage { [Cu₆L₆(BF₄)](BF₄)₅}

A hexanuclear cage { [Ag₆L₆(SbF₆)](SbF₆)₅}

A hexanuclear cage $[Ag_6L_6(BF_4)][Co(C_2H_{11}B_9)_2]_5$

A dinuclear cation $(AgL)_2[Co(C_2H_{11}B_9)_2]_2$

The problems

Disorder in many anions

Partial occupancy of some anions

Low resolution, low r/p ratios

The (template) anions are important

Some of the tools – a brief survey

EXYZ atomnames

The same x, y and z parameters are used for all the named atoms.

EADP atomnames

The same isotropic or anisotropic displacement parameters are used for all the named atoms.

PART n sof

The following atoms belong to PART n of a disordered group.

The tools ...

DFIX d s[0.02] atom pairs

The distance pairs of atoms are restrained to a specified target value of d(s).

SADI s[0.02] atom pairs

The distances between pairs of atoms are restrained to be equal with an effective standard deviation s (cf. DFIX)

SAME s1[0.02] s2[0.02] atomnames

The atoms specified here are linked to the same number of atoms which follow.

The tools ...

FLAT s[0.1] four or more atoms

The named atoms are restrained to lie in a plane.

SUMP c sigma c1 m1 c2 m2 ...

The linear restraint: c = c1*fv(m1) + c2*fv(m2) + ... is applied to the specified free variables.

DELU/SIMU/ISOR

Applies various restraints to ADPs.

The tools ...

FRAG code[17] a ... γ

Enables a fragment to be input using an input cell and coordinates.

FEND

This must immediately follow the last atom of a FRAG fragment.

AFIX n>16

Applies geometry of fragment with this n value.

DFIX 1.38 0.01 B F1 B F2 B F3 B F4

DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 = F2 F3 F2 F4 F3 F4

This is often a prelude to disorder modelling ...

DFIX 1.38 0.01 B F1 B F2 B F3 B F4

DFIX 2.25 0.02 F1 F2 F1 F3 F1 F4 = F2 F3 F2 F4 F3 F4

DFIX 1.38 0.01 B F1' B F2' B F3' B F4'

F₂ DFIX 2.25 0.02 F1' F2' F1' F3' F1' F4' = F2' F3' F2' F4' F3' F4'

+ refine occupancy of F1—F4 versus F1'—F4'

SADI 0.01 SB26 F27 SB26 F28 ...

SADI 0.02 F27 F28 F27 F29 ...

(cis angles only)

SADI 0.02 F27 F30 F28 F31 F29 F32

(trans angles)

mean Sb—F 1.85(1) Å (175 CCDC entries)

"average out" the discrepancies

Disorder over multiple (>2) sites

- with two sites just use a free variable
- with more it is a bit more complicated

- SUMP instruction
- > several free variables on FVAR instruction
- > free variable references in ATOM instructions

Br2 Br1 Br4 Br5 Br3

SUMP 1.00 0.01 12 13 14 15 16

FVAR osf 0.2 0.2 0.2 0.2 0.2 Br1 21 x y z x y z 31 5 Br2 5 Br3 41 хуz Br4 5 51 x y z 5 Br5 x y z61

★ these occupancies will refine subject to their sum staying close to 1.00

Multiple DFIX instructions

Co-B Co-C B-B B-C

Manual or automatic generation

+ similarity restraints between cages

Complicated

(and no angle restraints)

A hexanuclear cage $[Ag_6L_6(BF_4)][Co(C_2H_{11}B_9)_2]_5$

[Co(C₂B₉H₁₁)₂] is a 3D-rigid anioncan treat it as a rigid group

Can take model from

- □ a better version in the same structure
- □ a better version from another structure
- □ a calculated or optimised version
- ☐ a typical or average database structure

First import the model into the INS file

```
FRAG 17 15.72 20.15 20.39 74.8 70.75 86.50
Co 4
       x y z ...
C1 1 x y z ...
C2 1
       x y z ...
B3 3
       x y z ...
B19 3
        xyz ...
FEND
```

Then apply this model to your structure

AFIX 17

- Your model is idealised to the input model
- FRAG ... FEND lines disappear in the RES file
- AFIX 17 is replaced by a simple AFIX 3
- Positional parameters reduced from 69 to 6
- The 3D matching requirements are rigorous
- The input model <u>must</u> be valid
- Check the refinement indicators for warnings

Could also be applied to ...

+ benzene solvent, phenyl rings, other rigid anions, etc ...

Thanks to

University of Nottingham
Overseas Conference Fund

Royal Society

Oleg Dolomanov, Neil Champness, Martin Schröder, Claire Wilson